首页> 外文期刊>BMC Biotechnology >Unusual acylation of chloramphenicol in Lysobacter enzymogenes, a biocontrol agent with intrinsic resistance to multiple antibiotics
【24h】

Unusual acylation of chloramphenicol in Lysobacter enzymogenes, a biocontrol agent with intrinsic resistance to multiple antibiotics

机译:溶菌酶基因中氯霉素的不寻常酰化作用,一种对多种抗生素具有内在抗性的生物防治剂

获取原文
           

摘要

BackgroundThe environmental gliding bacteria Lysobacter are emerging as a new group of biocontrol agents due to their prolific production of lytic enzymes and potent antibiotic natural products. These bacteria are intrinsically resistant to many antibiotics, but the mechanisms behind the antibiotic resistance have not been investigated. ResultsPreviously, we have used chloramphenicol acetyltransferase gene ( cat ) as a selection marker in genetic manipulation of natural product biosynthetic genes in Lysobacter , because chloramphenicol is one of the two common antibiotics that Lysobacter are susceptible to. Here, we found L. enzymogenes , the most studied species of this genus, could still grow in the presence of a low concentration of chloramphenicol. Three chloramphenicol derivatives ( 1 – 3 ) with an unusual acylation pattern were identified in a cat -containing mutant of L. enzymogenes and in the wild type. The compounds included chloramphenicol 3'-isobutyrate ( 1 ), a new compound chloramphenicol 1'-isobutyrate ( 2 ), and a rare chloramphenicol 3'-isovalerate ( 3 ). Furthermore, a mutation of a global regulator gene ( clp ) or a Gcn5-related N -acetyltransferase (GNAT) gene in L. enzymogenes led to nearly no growth in media containing chloramphenicol, whereas a complementation of clp restored the chloramphenicol acylation as well as antibiotic HSAF production in the clp mutant. ConclusionsThe results indicated that L. enzymogenes contains a pool of unusual acyl donors for enzymatic modification of chloramphenicol that confers the resistance, which may involve the Clp-GNAT regulatory system. Because Lysobacter are ubiquitous inhabitants of soil and water, the finding may have important implications in understanding microbial competitions and bioactive natural product regulation.
机译:背景技术环境滑翔细菌溶血杆菌由于其分解酶和有效的抗生素天然产物的大量生产而成为一类新的生物防治剂。这些细菌本质上对许多抗生素具有抗性,但尚未研究抗药性背后的机制。结果以前,我们将氯霉素乙酰基转移酶基因(cat)用作溶血杆菌天然产物生物合成基因的基因操作的选择标记,因为氯霉素是溶血细菌易感的两种常见抗生素之一。在这里,我们发现L.酶基因是该属中研究最多的物种,在低浓度的氯霉素存在下仍可以生长。在含有猫的L.酶基因突变体和野生型中鉴定出三种具有非典型酰化模式的氯霉素衍生物(1-3)。这些化合物包括氯霉素3'-异丁酸酯(1),新化合物氯霉素1'-异丁酸酯(2)和稀有的氯霉素3'-异戊酸酯(3)。此外,在L.酶基因中的全局调节基因(clp)或Gcn5相关的N-乙酰转移酶(GNAT)基因的突变导致含有氯霉素的培养基几乎没有生长,而clp的互补则恢复了氯霉素的酰化以及clp突变体中的抗生素HSAF产生。结论结果表明,L。酶基因包含大量不寻常的酰基供体,用于氯霉素的酶促修饰,赋予了耐药性,这可能涉及Clp-GNAT调节系统。由于溶杆菌是土壤和水的普遍栖息地,因此该发现可能对理解微生物竞争和生物活性天然产物的调控具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号