...
首页> 外文期刊>Biotechnology for Biofuels >Physico-chemical oxidative cleavage strategy facilitates the degradation of recalcitrant crystalline cellulose by cellulases hydrolysis
【24h】

Physico-chemical oxidative cleavage strategy facilitates the degradation of recalcitrant crystalline cellulose by cellulases hydrolysis

机译:物理化学氧化裂解策略促进纤维素酶水解降解难降解的结晶纤维素

获取原文
           

摘要

BackgroundEfficient enzymatic conversion of recalcitrant crystalline cellulose is critical for enabling cost-effective industrial conversion of cellulosic biomass to biofuels and chemicals. Fully understanding enzyme digestion mechanism is paving a new way to design efficient process for biomass conversion. Accordingly, a continuing drive is inspiring to discover new routes to promote crystalline cellulose disruption. ResultsHerein, a physico-chemical oxidative cleavage strategy of irradiation oxidation/post-reduction (IOPR) was employed to treat crystalline cellulose I to cleave glycosidic bonds association with some new oxidized and reduced chain ends, thus boosting downstream degradation by cellulases from Trichoderma reesei . The hydrolysis performance of treated crystalline cellulose was conducted with either T. reesei Cel7A (TrCel7A) alone, or a cellulase enzyme mixture (90% Celluclast 1.5?L, 10% β-glucosidase). 81.6 and/or 97% of conversion efficiency have been reached for 24-h and 48-h cellulase hydrolysis, respectively. The high efficient conversion of crystalline cellulose after IOPR is mainly attributed to generating some new chain ends, which are identified by MAIDI-TOF–MS and HPLC. Furthermore, the nanoscale architectures of crystalline cellulose before and after IOPR are systematically investigated by XRD, EPR, ATR- FTIR, GPC, and XPS techniques. Together with TEM images, the results reveal a fascinating digestion mechanism of “peel-off” and “cavity-formation” paradigms toward degrading crystalline cellulose by cellulase mixtures after IOPR treatment. ConclusionsThis encouraging results show that the proposed IOPR approach will become a potential competitive alternative to current biomass pretreatment. It opens a new avenue toward the implementation of pretreatment and the design of enzyme cocktails in lignocellulosic biorefinery.
机译:背景技术顽固性结晶纤维素的高效酶促转化对于实现经济有效的纤维素生物质向生物燃料和化学品的工业转化至关重要。充分理解酶消化机制正在为设计有效的生物质转化过程铺平道路。因此,持续的驱动力启发了人们发现促进结晶纤维素破坏的新途径。结果在此,采用辐射氧化/还原后的物理化学氧化裂解策略(IOPR)处理结晶纤维素I,以裂解糖苷键与一些新的氧化和还原的链端缔合,从而促进里氏木霉纤维素酶的下游降解。处理过的结晶纤维素的水解性能仅通过里氏木霉Cel7A(TrCel7A)或纤维素酶混合物(90%Celluclast 1.5?L,10%β-葡萄糖苷酶)来进行。 24小时和48小时纤维素酶水解分别达到了81.6和/或97%的转化效率。 IOPR后结晶纤维素的高效转化主要归因于产生了一些新的链端,这些新的链端已通过MAIDI-TOF-MS和HPLC鉴定。此外,通过XRD,EPR,ATR-FTIR,GPC和XPS技术系统地研究了IOPR前后的结晶纤维素的纳米级结构。连同TEM图像,结果揭示了在IOPR处理后,“剥离”和“空穴形成”范式对纤维素酶混合物降解结晶纤维素的引人入胜的消化机制。结论这一令人鼓舞的结果表明,提出的IOPR方法将成为当前生物质预处理的潜在竞争替代方法。它为木质纤维素生物炼制中的预处理实施和酶混合物的设计开辟了一条新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号