首页> 外文期刊>Bioresources and Bioprocessing >Engineering a wild-type diploid Saccharomyces cerevisiae strain for second-generation bioethanol production
【24h】

Engineering a wild-type diploid Saccharomyces cerevisiae strain for second-generation bioethanol production

机译:工程野生型二倍体酿酒酵母菌株用于第二代生物乙醇生产

获取原文
           

摘要

Background: The cost-effective production of second-generation bioethanol, which is made from lignocellulosic materials, has to face the following two problems: co-fermenting xylose with glucose and enhancing the strain's tolerance to lignocellulosic inhibitors. Based on our previous study, the wild-type diploid Saccharomyces cerevisiae strain BSIF with robustness and good xylose metabolism genetic background was used as a chassis for constructing efficient xylose-fermenting industrial strains. The performance of the resulting strains in the fermentation of media with sugars and hydrolysates was investigated. Results: The following two novel heterologous genes were integrated into the genome of the chassis cell: the mutant MGT05196~(N360F), which encodes a xylose-specific, glucose-insensitive transporter and is derived from the Meyerozyma guilliermondii transporter gene MGT05196, and Ru-xylA (where Ru represents the rumen), which encodes a xylose isomerase (XI) with higher activity in S. cerevisiae. Additionally, endogenous modifications were also performed, including the overproduction of the xylulokinase Xks1p and the non-oxidative PPP (pentose phosphate pathway), and the inactivation of the aldose reductase Gre3p and the alkaline phosphatase Pho13p. These rationally designed genetic modifications, combined with alternating adaptive evolutions in xylose and SECS liquor (the leach liquor of steam-exploding corn stover), resulted in a final strain, LF1, with excellent xylose fermentation and enhanced inhibitor resistance. The specific xylose consumption rate of LF1 reached as high as 1.089 g g~(-1) h~(-1) with xylose as the sole carbon source. Moreover, its highly synchronized utilization of xylose and glucose was particularly significant; 77.6% of xylose was consumed along with glucose within 12 h, and the ethanol yield was 0.475 g g~(-1), which is more than 93% of the theoretical yield. Additionally, LF1 performed well in fermentations with two different lignocellulosic hydrolysates. Conclusion: The strain LF1 co-ferments glucose and xylose efficiently and synchronously. This result highlights the great potential of LF1 for the practical production of second-generation bioethanol.
机译:背景:由木质纤维素材料制成的第二代生物乙醇的经济有效生产必须面对以下两个问题:木糖与葡萄糖的共同发酵以及提高菌株对木质纤维素抑制剂的耐受性。基于我们先前的研究,具有健壮性和良好的木糖代谢遗传背景的野生型二倍体酿酒酵母菌株BSIF被用作构建有效的木糖发酵工业菌株的基础。研究了所得菌株在糖和水解产物发酵培养基中的性能。结果:以下两个新的异源基因被整合到底盘细胞的基因组中:突变体MGT05196〜(N360F),其编码木糖特异性,葡萄糖不敏感的转运蛋白,其衍生自古氏耶尔酵母(Meyerozyma guilliermondii)转运蛋白基因MGT05196和Ru -xylA(其中Ru代表瘤胃),编码在酿酒酵母中具有较高活性的木糖异构酶(XI)。此外,还进行了内源性修饰,包括木糖激酶Xks1p和非氧化PPP(戊糖磷酸途径)的过量生产以及醛糖还原酶Gre3p和碱性磷酸酶Pho13p的失活。这些经过合理设计的遗传修饰,再结合木糖和SECS液(蒸汽爆破玉米秸秆的浸出液)中的交替适应性进化,产生了最终菌株LF1,其具有出色的木糖发酵能力和增强的抗药性。以木糖为唯一碳源,LF1的比木糖消耗率高达1.089 g g·(-1)h〜(-1)。而且,它对木糖和葡萄糖的高度同步利用特别重要。 12h内木糖与葡萄糖一起消耗了77.6%,乙醇产量为0.475g g·(-1),是理论产量的93%以上。另外,LF1在使用两种不同的木质纤维素水解产物进行发酵时表现良好。结论:LF1菌株可以高效,同步地发酵葡萄糖和木糖。该结果突出了LF1在第二代生物乙醇实际生产中的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号