...
首页> 外文期刊>Biology Direct >Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns
【24h】

Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

机译:rbcL在三个裸子植物家族中的分子进化:识别适应性和共进化模式

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background The chloroplast-localized ribulose-1, 5-biphosphate carboxylase/oxygenase (Rubisco), the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO2. The large subunit (LSU) of Rubisco is encoded by the chloroplast rbcL gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield clues on the biological meaning of such adaptive processes. The role of such coevolutionary dynamics in the continual fine-tuning of RbcL remains obscure. Results We used the timescale and phylogenetic analyses to investigate and search for processes of adaptive evolution in rbcL gene in three gymnosperm families, namely Podocarpaceae, Taxaceae and Cephalotaxaceae. To understand the relationships between regions identified as having evolved under adaptive evolution, we performed coevolutionary analyses using the software CAPS. Importantly, adaptive processes were identified at amino acid sites located on the contact regions among the Rubisco subunits and on the interface between Rubisco and its activase. Adaptive amino acid replacements at these regions may have optimized the holoenzyme activity. This hypothesis was pinpointed by evidence originated from our analysis of coevolution that supported the correlated evolution between Rubisco and its activase. Interestingly, the correlated adaptive processes between both these proteins have paralleled the geological variation history of the concentration of atmospheric CO2. Conclusions The gene rbcL has experienced bursts of adaptations in response to the changing concentration of CO2 in the atmosphere. These adaptations have emerged as a result of a continuous dynamic of mutations, many of which may have involved innovation of functional Rubisco features. Analysis of the protein structure and the functional implications of such mutations put forward the conclusion that this evolutionary scenario has been possible through a complex interplay between adaptive mutations, often structurally destabilizing, and compensatory mutations. Our results unearth patterns of evolution that have likely optimized the Rubisco activity and uncover mutational dynamics useful in the molecular engineering of enzymatic activities. Reviewers This article was reviewed by Prof. Christian Blouin (nominated by Dr W Ford Doolittle), Dr Endre Barta (nominated by Dr Sandor Pongor), and Dr Nicolas Galtier.
机译:背景叶绿体定位的核糖-1、5-二磷酸羧化酶/加氧酶(Rubisco)是引起自养的主要酶,在植物不断适应CO 2 浓度变化中发挥了作用。 Rubisco的大亚基(LSU)由叶绿体rbcL基因编码。尽管以前已经在该基因上鉴定了适应性过程,但是在蛋白质水平上表征突变动力学之间的关系可能会为此类适应性过程的生物学意义提供线索。这种协同进化动力学在RbcL的连续微调中的作用仍然不清楚。结果我们使用时间尺度和系统发育分析来调查和寻找三个裸子植物科,即罗汉松科,紫杉科和头草科的rbcL基因的适应性进化过程。为了了解被确定为在自适应进化下已经进化的区域之间的关系,我们使用CAPS软件进行了协进化分析。重要的是,在Rubisco亚基之间的接触区域以及Rubisco及其活化酶之间的界面上的氨基酸位点鉴定了适应性过程。在这些区域的自适应氨基酸替代可能优化了全酶活性。该假设是由我们对协同进化的分析所支持的证据所确定的,该证据支持Rubisco及其激活酶之间的相关进化。有趣的是,这两种蛋白之间的相关适应过程与大气中CO 2 浓度的地质变化历史相似。结论rbcL基因经历了适应性爆发,响应大气中CO 2 的浓度变化。这些适应性变化是由于突变持续不断而产生的,其中许多突变可能涉及功能性Rubisco功能的创新。通过分析这种突变的蛋白质结构和功能含义,得出这样的结论:通过适应性突变(通常在结构上不稳定和补偿性突变)之间的复杂相互作用,可以实现这种进化方案。我们的研究结果揭示了可能优化了Rubisco活性的进化模式,并揭示了可用于酶活性分子工程的突变动力学。审阅者本文由Christian Blouin教授(由W Ford Doolittle博士提名),Endre Barta博士(由Sandor Pongor博士提名)和Nicolas Galtier博士进行了审查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号