首页> 外文期刊>Biochemistry and Biophysics Reports >Development of a subunit vaccine for prevention of Clostridium difficile associated diseases: Biophysical characterization of toxoids A and B
【24h】

Development of a subunit vaccine for prevention of Clostridium difficile associated diseases: Biophysical characterization of toxoids A and B

机译:预防艰难梭菌相关疾病的亚单位疫苗的开发:类毒素A和B的生物物理特性

获取原文
       

摘要

Inactivation of bacterial toxins for use in human vaccines traditionally is achieved by treatment with formaldehyde. In contrast, the bivalent experimental vaccine for the prevention of C. difficile infections (CDI) that is currently being evaluated in clinical trials was produced using a different strategy. C. difficile toxins A and B were inactivated using site-directed mutagenesis and treatment with 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride/ N -hydroxysulfosuccinimide (EDC/NHS). In the present work we investigate the effect of genetic and chemical modifications on the structure of inactivated toxins (toxoids) A and B. The far-UV circular dichroism (CD) spectra of wild type toxins, mutated toxins, and EDC/NHS-inactivated toxoids reveal that the secondary structure of all proteins is very similar. The near-UV CD spectra show that aromatic residues of all proteins are in a unique asymmetric environment, indicative of well-defined tertiary structure. These results along with the fluorescence emission maxima of 335 nm observed for all proteins suggest that the tertiary structure of toxoids A and B is preserved as well. Analytical ultracentrifugation data demonstrate that all proteins are predominantly monomeric with small fractions of higher molecular weight oligomeric species present in toxoids A and B. Differential scanning calorimetry data reveal that genetic mutations induce thermal destabilization of protein structures. Subsequent treatment with EDC/NHS results either in a minimal (1 °C) increase of apparent thermostability (toxoid B) or no change at all (toxoid A). Therefore, our two-step inactivation strategy is an effective approach for the preparation of non-toxic proteins maintaining native-like structure and conformation. Highlights ? Performed biophysical characterization of C. difficile toxins and toxoids A/B. ? Genetic and EDC/NHS modifications do not disrupt the protein's structure. ? Inactivated toxins (toxoids) are predominantly monomeric molecules. ? Toxin inactivation has no effect on the structural plasticity of the proteins. ? Genetic and EDC/NHS modifications represent a novel toxin inactivation approach.
机译:传统上用于人类疫苗的细菌毒素的灭活是通过甲醛处理来实现的。相反,目前正在临床试验中评估的用于预防艰难梭菌感染的二价实验疫苗是采用另一种策略生产的。使用定点诱变灭活艰难梭菌毒素A和B,并用1-乙基-3- [3-二甲基氨基丙基]碳二亚胺盐酸盐/ N-羟基磺基琥珀酰亚胺(EDC / NHS)处理。在本工作中,我们研究了遗传和化学修饰对灭活毒素(类毒素)A和B的结构的影响。野生型毒素,突变毒素和EDC / NHS灭活的远紫外圆二色性(CD)光谱类毒素揭示了所有蛋白质的二级结构非常相似。近紫外CD光谱表明,所有蛋白质的芳族残基均处于独特的不对称环境中,表明三级结构明确。这些结果以及对所有蛋白质观察到的最大335 nm的荧光发射表明类毒素A和B的三级结构也得以保留。超离心分析数据表明,所有蛋白主要为单体,类毒素A和B中存在小部分较高分子量的寡聚物种。差示扫描量热数据显示,遗传突变引起蛋白结构的热不稳定。随后用EDC / NHS处理会导致表观热稳定性的最小增加(1°C)(类毒素B)或根本没有变化(类毒素A)。因此,我们的两步失活策略是制备保持天然结构和构象的无毒蛋白质的有效方法。强调 ?进行了艰难梭菌毒素和类毒素A / B的生物物理表征。 ?遗传和EDC / NHS修饰不会破坏蛋白质的结构。 ?灭活的毒素(类毒素)主要是单体分子。 ?毒素灭活对蛋白质的结构可塑性没有影响。 ?遗传和EDC / NHS修饰代表了一种新型的毒素灭活方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号