首页> 外文期刊>Biology >Glutamine-Glutamate Cycle Flux Is Similar in Cultured Astrocytes and Brain and Both Glutamate Production and Oxidation Are Mainly Catalyzed by Aspartate Aminotransferase
【24h】

Glutamine-Glutamate Cycle Flux Is Similar in Cultured Astrocytes and Brain and Both Glutamate Production and Oxidation Are Mainly Catalyzed by Aspartate Aminotransferase

机译:谷氨酰胺-谷氨酸循环通量在培养的星形胶质细胞和大脑中相似,并且谷氨酸的产生和氧化都主要由天冬氨酸转氨酶催化。

获取原文
           

摘要

The glutamine-glutamate cycle provides neurons with astrocyte-generated glutamate/γ-aminobutyric acid (GABA) and oxidizes glutamate in astrocytes, and it returns released transmitter glutamate/GABA to neurons after astrocytic uptake. This review deals primarily with the glutamate/GABA generation/oxidation, although it also shows similarity between metabolic rates in cultured astrocytes and intact brain. A key point is identification of the enzyme(s) converting astrocytic α-ketoglutarate to glutamate and vice versa. Most experiments in cultured astrocytes, including those by one of us, suggest that glutamate formation is catalyzed by aspartate aminotransferase (AAT) and its degradation by glutamate dehydrogenase (GDH). Strongly supported by results shown in Table 1 we now propose that both reactions are primarily catalyzed by AAT. This is possible because the formation occurs in the cytosol and the degradation in mitochondria and they are temporally separate. High glutamate/glutamine concentrations abolish the need for glutamate production from α-ketoglutarate and due to metabolic coupling between glutamate synthesis and oxidation these high concentrations render AAT-mediated glutamate oxidation impossible. This necessitates the use of GDH under these conditions, shown by insensitivity of the oxidation to the transamination inhibitor aminooxyacetic acid (AOAA). Experiments using lower glutamate/glutamine concentration show inhibition of glutamate oxidation by AOAA, consistent with the coupled transamination reactions described here.
机译:谷氨酰胺-谷氨酸循环为神经元提供星形胶质细胞生成的谷氨酸/γ-氨基丁酸(GABA),并氧化星形胶质细胞中的谷氨酸,并在星形胶质细胞摄取后将释放的谷氨酸/ GABA递质返回神经元。这篇综述主要涉及谷氨酸/ GABA的产生/氧化,尽管它也显示了培养的星形胶质细胞和完整大脑的代谢率之间的相似性。关键是鉴定将星形细胞的α-酮戊二酸转化为谷氨酸,反之亦然的酶。培养的星形胶质细胞的大多数实验,包括我们中的一个实验,都表明谷氨酸的形成是由天冬氨酸转氨酶(AAT)催化和谷氨酸脱氢酶(GDH)降解。在表1中所示的结果的强烈支持下,我们现在建议这两个反应主要由AAT催化。这是可能的,因为形成发生在细胞质中和线粒体降解,并且它们在时间上是分开的。高谷氨酸/谷氨酰胺浓度消除了从α-酮戊二酸生产谷氨酸的需要,并且由于谷氨酸合成和氧化之间的代谢偶联,这些高浓度使得AAT介导的谷氨酸氧化成为不可能。这需要在这些条件下使用GDH,这表现为氧化对氨基转移乙酸氨基氧化乙酸(AOAA)的不敏感性。使用较低的谷氨酸/谷氨酰胺浓度的实验显示,AOAA抑制了谷氨酸的氧化,这与此处所述的偶联的氨基转移反应一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号