首页> 外文期刊>Desalination >Physico-chemical studies on BELGARD EV and BELGARD EV2000 solutions Part Ⅰ: Their densities and viscosities at various dilutions and temperatures
【24h】

Physico-chemical studies on BELGARD EV and BELGARD EV2000 solutions Part Ⅰ: Their densities and viscosities at various dilutions and temperatures

机译:BELGARD EV和BELGARD EV2000溶液的理化研究第一部分:在不同稀释度和温度下的密度和粘度

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The absolute densities of aqueous BELGARD EV and BELGARD EV2000 solutions of concentrations varying between 1 and 50 wt/vol% are determined in the temperature range 25-90℃. At any temperature the density, d, of the two substances varies with the concentration, C, according to d=a+bC. The term a is the same for the two additives, being the density of pure water. By contrast, the term b is material-dependent. At comparable temperatures the b values of BELGARD EV are higher than those of BELGARD EV2000. Further, the b of BELGARD EV decreases linearly with rise of temperature, whereas that of BELGARD EV2000 follows an S-shape pattern. The density of solutions of constant additive concentration varies with temperature, t, according to d=d_(25) -ct. The temperature coefficient of density c varies with additive concentration in two distinct manners. For BELGARD EV c increases linearly up to 35 wt/vol% and remains constant thereafter. For BELGARD EV2000 c undergoes a sudden change at 38 wt/vol%; below and above this concentration c is concentration-independent. The disparity in behaviour of the b and c constants allows the differentiation between the two additives, which are otherwise identical in all respects. The linear dependence of density on solution concentration is made use of in controlling the solid content of BELGARD EV and BELGARD EV2000 preparations. The viscous flow of BELGARD EV and BELGARD EV2000 solutions of concentrations varying between 1-50 wt/vol% in the temperature range 25-90℃ is measured. From this information the relative-, absolute-, specific-, kinematic-, reduced- and inherent viscosities are computed. The shape of the log η-C curves depends on the particular definition of η. Absolute, relative and kinematic viscosities give rise to well separated, almost parallel curves with slight concave curvature at low concentrations. Specific viscosity gives rise to curves with inverse parabolic pattern at low concentrations, changing into straight lines above ca 15 wt/vol%. Inherent and reduced viscosities give rise to parallel straight lines over the entire concentration range. Rise in temperature brings about a decrease in viscosity. Plots of log η as a function of the reciprocal of absolute temperature are invariably straight lines, allowing the computation of the activation energy of viscous flow. The magnitude of this parameter depends on the type of viscosity examined. There is no significant difference between the activation energies of BELGARD EV and BELGARD E V2000. The variation of activation energy of the various viscosities with additive concentration is considered. No single relationship describes all viscosities. Measurement of the absolute and specific viscosities, complementary to density evaluation, is proposed for controlling the concentration of the two additives.
机译:在25-90℃的温度范围内测定浓度在1至50 wt / vol%之间的BELGARD EV和BELGARD EV2000水溶液的绝对密度。在任何温度下,根据d = a + bC,两种物质的密度d随浓度C的变化而变化。两种添加剂的术语a相同,即纯水的密度。相反,项b是与材料有关的。在相当的温度下,BELGARD EV的b值高于BELGARD EV2000的b值。此外,BELGARD EV的b随着温度的升高而线性减小,而BELGARD EV2000的b呈S形。根据d = d_(25)-ct,恒定添加剂浓度的溶液密度随温度t而变化。密度c的温度系数以两种不同的方式随添加剂浓度而变化。对于BELGARD,EV c线性增加至35 wt / vol%,此后保持恒定。对于BELGARD EV2000,c在38 wt / vol%时发生突然变化;低于和高于该浓度c是浓度无关的。 b和c常数的行为差异允许两种添加剂之间的区别,否则在所有方面都是相同的。密度与溶液浓度的线性关系可用于控制BELGARD EV和BELGARD EV2000制剂的固体含量。在25-90℃的温度范围内,测量浓度为1-50 wt / vol%的BELGARD EV和BELGARD EV2000溶液的粘性流量。根据此信息,可以计算相对粘度,绝对粘度,比运动粘度,降低的粘度和固有粘度。 logη-C曲线的形状取决于η的特定定义。在低浓度下,绝对,相对和运动粘度会产生良好分离的,几乎平行的曲线,并具有轻微的凹曲率。在低浓度下,比粘度产生具有反抛物线图形的曲线,在高于15 wt / vol%时变为直线。固有的和降低的粘度会在整个浓度范围内产生平行的直线。温度升高导致粘度降低。 logη随绝对温度的倒数变化的曲线始终为直线,从而可以计算粘性流的激活能。该参数的大小取决于所检查的粘度类型。 BELGARD EV和BELGARD E V2000的活化能之间没有显着差异。考虑了各种粘度的活化能随添加剂浓度的变化。没有单一关系描述所有粘度。为了控制两种添加剂的浓度,建议对绝对粘度和比粘度进行测量,以补充密度评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号