首页> 外文期刊>Desalination and water treatment >Finite elements-based 2D theoretical analysis of the effect of IEX membrane thickness and salt solution residence time on the ion transport within a salinity gradient power reverse electrodialysis half cell pair
【24h】

Finite elements-based 2D theoretical analysis of the effect of IEX membrane thickness and salt solution residence time on the ion transport within a salinity gradient power reverse electrodialysis half cell pair

机译:基于IEX膜厚度和盐溶液停留时间对盐度梯度功率反向电渗析半电池对中离子传输影响的基于有限元的二维理论分析

获取原文
获取原文并翻译 | 示例
       

摘要

Reverse electrodialysis electrical power generation is based on the transport of salt ions through ion conductive membranes. The ion flux, equivalent to an electric current, results from a salinity gradient, induced by two salt solutions at significantly different concentrations. Such equivalent electric current in combination with the corresponding electrochemical potential difference across the membrane, equivalent to an electric potential, results in a battery equivalency. While having a co-current fluid flow of both solutions in the reverse electrodialysis cell pair compartments, a mathematical model needs to be based on both diffusion and convective mass transport equations in the compartments and on the, electro-migration-based, ion transport through the membranes. The steady state salt ion flux through the membranes and the corresponding ion concentration distribution within the salt solution compartments of a reverse electrodialysis cell pair (in the absence of electrodes) was theoretically analysed by using two-dimensional finite element (FEM) modelling. Fundamental information on the effect of membrane thickness and fluid flow velocity was obtained. FEM simulations support the theoretical insight into reverse electrodialysis phenomena and thus assist in the planning/design of experimental work. The FEM approximation is superior with respect to a modelling of the combined effect of all complex and simultaneous ion transport mechanisms in the reverse electrodialysis cell pair compartments and ion conductive membranes. In fact, this first time reporting of a FEM modelling of a half cell pair obviously also includes the complex and dynamic drop in salinity gradient, between influent side and effluent side, over the height of the half cell pair compartments.
机译:反向电渗析发电基于盐离子通过离子导电膜的传输。离子流等于电流,是由两种浓度明显不同的盐溶液感应出的盐度梯度产生的。这种等效电流与跨膜的相应电化学势差(等于电势)相结合,导致电池等效。在反向电渗析池对隔室中同时存在两种溶液的并流流体流动时,数学模型需要基于隔室中的扩散和对流传质方程,以及基于电迁移的离子迁移膜。理论上通过使用二维有限元(FEM)建模分析了穿过膜的稳态盐离子通量以及反向电渗析池对(在没有电极的情况下)的盐溶液室内的相应离子浓度分布。获得了有关膜厚度和流体流速影响的基本信息。有限元模拟为逆电渗析现象提供了理论上的见识,因此有助于实验工作的规划/设计。对于反向电渗析池对隔室和离子传导膜中所有复杂且同时发生的离子传输机制的组合效应建模,FEM逼近法是优越的。实际上,这是第一次对半电池对进行FEM建模的报告显然还包括在半电池对隔室的整个高度上,流入侧和流出侧之间盐度梯度的复杂而动态的下降。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号