...
首页> 外文期刊>Deep-Sea Research. PART I, Oceanographic Research Papers >A regime diagram for classifying turbulent large eddies in the upper ocean
【24h】

A regime diagram for classifying turbulent large eddies in the upper ocean

机译:一种用于对上部海洋中的湍流大涡进行分类的状态图

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A large eddy simulation (LES) model is used to examine how buoyancy-driven thermal convection, wind-driven shear turbulence and wind/wave-driven Langmuir circulation compete to generate turbulence in the ocean surface mixed layer. The turbulent Langmuir number La_t, a ratio of friction velocity to surface Stokes drift velocity, and the Hoenikker number Ho, a ratio of buoyancy forcing to wave forcing, are two controlling dimensionless parameters. We explore low-order turbulence statistics in the La_t and Ho parameter space for a wide range of atmospheric forcing conditions and construct a regime diagram to differentiate buoyancy-, shear- and wave-driven turbulence. All three types of turbulent flows are anisotropic but show different orderings of turbulence intensities: vertical > (downwind, crosswind) in Convective turbulence; downwind >crosswind >vertical in shear turbulence; crosswind ≈ vertical > downwind in Langmuir turbulence. These orderings of turbulence intensities can be explained by examining the turbulence energy production in three directions. Buoyancy production in the vertical direction dominates turbulence generation in convective turbulence, whereas shear production in the downwind direction dominates turbulence generation in shear-driven turbulence. In Langmuir turbulence, however, Stokes production due to surface waves generates turbulence energy in both crosswind and vertical directions. Turbulence in the wind-driven upper ocean shows a transition from shear to Langmuir turbulence as La_t decreases. A fully-developed sea state corresponds to La_t ≈ 0.3 and lies within the Langmuir regime. Vertical turbulence intensity in Langmuir turbulence is about two times larger than that in shear turbulence and falls into the range observed in the upper ocean. Hence the wind-driven upper ocean will be dominated by Langmuir turbulence under typical sea state conditions. Transition from Langmuir to convective turbulence occurs around Ho = O(1), which is much greater than Ho = O(0.01) obtained using typical heat fluxes and wind speeds.
机译:大型涡模拟(LES)模型用于检查浮力驱动的热对流,风驱动的剪切湍流和风/波驱动的朗缪尔环流如何竞争以在海洋表面混合层中产生湍流。湍流的朗缪尔数La_t(摩擦速度与表面斯托克斯漂移速度之比)和Hoenikker数Ho(浮力强迫与波浪强迫之比)是两个控制无量纲的参数。我们在广泛的大气强迫条件下探索La_t和Ho参数空间中的低阶湍流统计数据,并构造一个状态图来区分浮力,剪切和波浪驱动的湍流。三种类型的湍流都是各向异性的,但湍流强度表现出不同的顺序:对流湍流的垂直>(顺风,逆风);顺风>逆风>剪切湍流垂直;朗缪尔湍流中的逆风≈垂直>顺风。湍流强度的这些顺序可以通过检查三个方向上的湍流能量产生来解释。垂直方向上的浮力产生在对流湍流中占主导地位,而顺风方向上的剪切力在剪切驱动的湍流中占主导地位。但是,在Langmuir湍流中,由于表面波而产生的斯托克斯波在侧风和垂直方向都产生湍流能量。当La_t减小时,在风驱动的上层海洋中的湍流显示出从剪切湍流到朗缪尔湍流的过渡。充分发展的海洋状态相当于La_t≈0.3,处于Langmuir政权之内。 Langmuir湍流中的垂直湍流强度大约是剪切湍流中的垂直湍流强度的两倍,并且落在上层海洋中观察到的范围内。因此,在典型的海况下,由风驱动的上层海洋将以朗缪尔湍流为主。从Langmuir到对流湍流的转变发生在Ho = O(1)左右,这比使用典型热通量和风速获得的Ho = O(0.01)大得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号