...
首页> 外文期刊>Deep-Sea Research >Simulation of upper-ocean biogeochemistry with a flexible-composition phytoplankton model: C, N and Si cycling and Fe limitation in the Southern Ocean
【24h】

Simulation of upper-ocean biogeochemistry with a flexible-composition phytoplankton model: C, N and Si cycling and Fe limitation in the Southern Ocean

机译:利用柔性组成浮游植物模型模拟南大洋生物地球化学:南大洋中C,N,Si的循环和铁的限制

获取原文
获取原文并翻译 | 示例
           

摘要

We previously reported the application of an upper-ocean biogeochemical model in which the elemental composition of the phytoplankton is flexible and responds to changes in light and nutrient availability [Mongin, M., Nelson, D., Pondaven, P., Brzezinski, M., Treguer, P., 2003. Simulation of upper-ocean biogeochemistry with a flexible-composition phytoplankton model: C, N and Si cycling in the western Sargasso Sea. Deep-Sea Research I 50, 1445-1480]. That model, applied in the western Sargasso Sea, considered the cycles of C, N and Si in the upper 400m and limitation of phytoplankton growth by N, Si and light. We now report a new version of this model that includes Fe cycling and Fe limitation and its application in the Southern Ocean. The model includes two phytoplankton groups, diatoms and non-siliceous forms. Uptake of NO_3~- by phytoplankton is light dependent, but NH_4~+, Si(OH)_4 and Fe uptake are not and can therefore continue through the night. The model tracks the resulting C/N and Fe/C ratios of both groups and Si/N ratio of diatoms, and permits uptake of C, N, Fe and Si to proceed independently when those ratios are close to those of nutrient-replete phytoplankton. When they indicate a deficiency cellular C, N, Fe or Si, uptake of the non-limiting elements is controlled by the content of the limiting element in accordance with the cell-quota formulation of [Droop, M., 1974. The nutrient status of algal cell in continuous culture. Journal of the Marine Biological Association of the United Kingdom 54, 825-855]. The model thus identifies the growth-limiting element and quantifies the degree of limitation from the elemental composition of the phytoplankton. We applied this model at the French KERFIX site in the Indian Ocean sector of the Southern Ocean, using meteorological forcing for that site from 1991 to 1995. As in the Sargasso Sea application, the flexible-composition structure provides simulations that are consistent with field data with only minimal tuning of model parameters. The model reproduces the high-nutrient, low-chlorophyll (HNLC) conditions observed at the KERFIX using much lower and more realistic grazing loss terms than those used in KERFIX simulations that do not include Fe limitation. Cellular Fe/C ratios indicate that both diatoms and non-siliceous phytoplankton are strongly limited by interaction between Fe limitation and low irradiance throughout most of the year in these simulations, with grazing a significant secondary factor.
机译:我们以前曾报道过一种上层海洋生物地球化学模型的应用,其中浮游植物的元素组成是灵活的,并能响应光和养分的利用率[Mongin,M.,Nelson,D.,Pondaven,P.,Brzezinski,M ,Treguer,P.,2003年。用柔性组合浮游植物模型模拟上层海洋生物地球化学:在Sargasso海西部的C,N和Si循环。深海研究I 50,1445-1480]。该模型应用于萨加索海西部,考虑了400m上部的C,N和Si的循环以及N,Si和光对浮游植物生长的限制。现在,我们报告此模型的新版本,其中包括Fe循环和Fe限制及其在南大洋中的应用。该模型包括两个浮游植物群,硅藻和非硅质形式。浮游植物对NO_3〜-的吸收是光依赖的,但是NH_4〜+,Si(OH)_4和Fe的吸收不是,因此可以持续一整夜。该模型跟踪两组所得的C / N和Fe / C比值以及硅藻的Si / N比值,并且当这些比值接近营养丰富的浮游植物时,可以独立进行C,N,Fe和Si的吸收。 。当它们指示细胞中的C,N,Fe或Si缺乏时,根据[Droop,M.,1974]的细胞配额配方,通过限制元素的含量控制非限制元素的摄入。连续培养中的藻细胞。英国海洋生物协会学报54,825-855]。因此,该模型可以识别生长限制元素,并根据浮游植物的元素组成来量化限制程度。我们使用该模型在1991年至1995年间在南洋印度洋地区法国KERFIX站点上的气象强迫,对该站点进行了应用。与在Sargasso Sea应用程序中一样,灵活的结构提供的模拟与现场数据一致仅需极少地调整模型参数。该模型使用比不包括Fe限制的KERFIX模拟中使用的条件低得多,更实际的放牧损失术语,再现了在KERFIX观察到的高营养,低叶绿素(HNLC)条件。在这些模拟中,一年中大部分时间中,Fe限制和低辐照度之间的相互作用强烈地限制了硅藻和非硅质浮游植物的硅藻和浮游植物,这是放牧的重要次要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号