...
首页> 外文期刊>Deep-Sea Research >Climatological mean and decadal change in surface ocean pCO_2, and net sea-air CO_2 flux over the global oceans
【24h】

Climatological mean and decadal change in surface ocean pCO_2, and net sea-air CO_2 flux over the global oceans

机译:全球海洋表层海洋pCO_2的气候平均值和年代际变化以及海洋净空气CO_2通量

获取原文
获取原文并翻译 | 示例
           

摘要

A climatological mean distribution for the surface water pCO_2 over the global oceans in non-El Nino conditions has been constructed with spatial resolution of 4° (latitude) × 5° (longitude) for a reference year 2000 based upon about 3 million measurements of surface water pCO_2 obtained from 1970 to 2007. The database used for this study is about 3 times larger than the 0.94 million used for our earlier paper [Takahashi et al., 2002. Global sea-air CO_2 flux based on climatological surface ocean pCO_2, and seasonal biological and temperature effects. Deep-Sea Res. II, 49, 1601-1622]. A time-trend analysis using deseasonalized surface water pCO_2 data in portions of the North Atlantic, North and South Pacific and Southern Oceans (which cover about 27% of the global ocean areas) indicates that the surface water pCO_2 over these oceanic areas has increased on average at a mean rate of 1.5μatmy~(-1) with basin-specific rates varying between 1.2±0.5 and 2.1 ± 0.4 μatmy~(-1). A global ocean database for a single reference year 2000 is assembled using this mean rate for correcting observations made in different years to the reference year. The observations made during El Nino periods in the equatorial Pacific and those made in coastal zones are excluded from the database.rnSeasonal changes in the surface water pCO_2 and the sea-air pCO_2 difference over four climatic zones in the Atlantic, Pacific, Indian and Southern Oceans are presented. Over the Southern Ocean seasonal ice zone, the seasonality is complex. Although it cannot be thoroughly documented due to the limited extent of observations, seasonal changes in pCO_2 are approximated by using the data for under-ice waters during austral winter and those for the marginal ice and ice-free zones.rnThe net air-sea CO_2 flux is estimated using the sea-air pCO_2 difference and the air-sea gas transfer rate that is parameterized as a function of (wind speed)~2 with a scaling factor of 0.26. This is estimated by inverting the bomb ~(14)C data using Ocean General Circulation models and the 1979-2005 NCEP-DOE AMIP-II Reanalysis (R-2) wind speed data. The equatorial Pacific (14°N-14°S) is the major source for atmospheric CO_2, emitting about +0.48Pg-Cy~(-1) and the temperate oceans between 14° and 50° in the both hemispheres are the major sink zones with an uptake flux of -0.70Pg-Cy~(-1) for the northern and -1.05Pg-Cy~(-1) for the southern zone. The high-latitude North Atlantic, including the Nordic Seas and portion of the Arctic Sea, is the most intense CO_2 sink area on the basis of per unit area, with a mean of -2.5 tons-C month~(-1) knrr~2. This is due to the combination of the low pCO_2 in seawater and high gas exchange rates. In the ice-free zone of the Southern Ocean (50-62°S), the mean annual flux is small (-0.06Pg-Cy~(-1)) because of a cancellation of the summer uptake CO_2 flux with the winter release of CO_2 caused by deepwater upwelling. The annual mean for the contemporary net CO_2 uptake flux over the global oceans is estimated to be -1.6 + 0.9Pg-Cy~(-1) which includes an undersampling correction to the direct estimate of -1.4 + O^Pg-Cy~(-1). Taking the pre-industrial steady-state ocean source of 0.4 ±0 .2Pg-Cy~(-1) into account, the total ocean uptake flux including the anthropogenic CO_2 is estimated to be -2.0 + l.0Pg-Cy~(-1) in 2000.
机译:基于大约300万次地表测量,在2000年的参考年中,以非°Nino条件下的全球海洋的地表水pCO_2的气候平均分布,其空间分辨率为4°(纬度)×5°(经度)。从1970年到2007年获得的水pCO_2。用于本研究的数据库大约是我们早先论文使用的94万的3倍[Takahashi等,2002。基于气候地表海洋pCO_2的全球海洋空气CO_2通量,以及季节生物和温度影响。深海研究。 II,49,1601-1622]。使用北大​​西洋,北太平洋,南太平洋和南大洋部分地区(覆盖全球约27%的区域)的季节性淡化地表水pCO_2数据进行的时间趋势分析表明,这些海洋区域的地表水pCO_2在平均值为1.5μatmy〜(-1),盆地比值介于1.2±0.5和2.1±0.4μatmy〜(-1)之间。使用该平均速率来组装单个参考年2000的全球海洋数据库,以更正参考年中不同年份的观测值。从数据库中排除了在厄尔尼诺现象期间在赤道太平洋的观测和在沿海地区的观测。海洋呈现。在南大洋的季节性冰区上,季节复杂。尽管由于观察范围有限而无法完全记录下来,但pCO_2的季节性变化可以通过使用南方冬季冰下水域以及边缘冰区和无冰区的数据来估算。利用海气pCO_2差和作为参数(风速)〜2的函数参数化的海气传输速率(比例因子为0.26)来估算通量。通过使用海洋总循环模型和1979-2005年NCEP-DOE AMIP-II再分析(R-2)风速数据将炸弹〜(14)C数据反转来估算。赤道太平洋(14°N-14°S)是大气CO_2的主要来源,排放约+ 0.48Pg-Cy〜(-1),两个半球的14°至50°之间的温带海洋是主要的汇北部地区的吸收通量为-0.70Pg-Cy〜(-1),南部地区的吸收通量为-1.05Pg-Cy〜(-1)。以单位面积为基准,包括北欧海和北极海部分在内的高纬度北大西洋是最密集的CO_2汇聚区,平均为-2.5吨C月〜(-1)knrr〜 2。这是由于海水中低pCO_2和高气体交换率的结合。在南大洋无冰区(50-62°S),年平均通量很小(-0.06Pg-Cy〜(-1)),因为夏季吸收的CO_2通量随着冬季释放而抵消深水上升引起的CO_2排放量当代全球海洋CO_2净吸收通量的年平均值估计为-1.6 + 0.9Pg-Cy〜(-1),其中包括对-1.4 + O ^ Pg-Cy〜(直接估计值)的欠采样校正。 -1)。考虑到工业前的稳态海洋源0.4±0 .2Pg-Cy〜(-1),包括人为CO_2在内的总海洋吸收通量估计为-2.0 + 1.0.0Pg-Cy〜(- 1)在2000年。

著录项

  • 来源
    《Deep-Sea Research》 |2009年第10期|554-577|共24页
  • 作者单位

    Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, PO Box 1000, Palisades, NY 10964-8000, USA;

    Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, PO Box 1000, Palisades, NY 10964-8000, USA;

    Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, FL, USA;

    Earth System Research Laboratory, National Oceanographic and Atmospheric Administration, Boulder, CO, USA;

    Pacific Marine Environmental Laboratory, National Oceanographic and Atmospheric Administration, Seattle, WA, USA;

    103 Reach Road, Harpswell, ME, USA;

    College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA;

    Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA;

    Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA;

    Pacific Marine Environmental Laboratory, National Oceanographic and Atmospheric Administration, Seattle, WA, USA;

    School of Environmental Sciences, University of East Anglia, Norwich, UK;

    School of Environmental Sciences, University of East Anglia, Norwich, UK;

    School of Environmental Sciences, University of East Anglia, Norwich, UK;

    Laboratoire d'Oceanographie et du Climat, LOCEAN/IPSL, CNRS. Universite Pierre et Marie Curie, Paris, France;

    Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan;

    Meteorological Research Institute, Tsukuba, Japan;

    Meteorological Research Institute, Tsukuba, Japan;

    National Institute for Environmental Studies, Tsukuba, Japan;

    Leibniz Institute of Marine Sciences, Kiel, Germany;

    Leibniz Institute of Marine Sciences, Kiel, Germany;

    Alfred Wegener Institute, Bremerhaven, Germany;

    Marine Research Institute and University of Iceland, Reykjavik, Iceland;

    Marine Research Institute and University of Iceland, Reykjavik, Iceland;

    Wealth from Oceans, CSIRO National Research Flagship, and the Antarctic Climate and Ecosystem Cooperative Research Center, Hobart, Australia;

    Bjerknes Centre for Climate Research, University of Bergen, Norway;

    Bjerknes Centre for Climate Research, University of Bergen, Norway;

    Bjerknes Centre for Climate Research, University of Bergen, Norway;

    Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, B.C., Canada;

    Universite de Liege, Liege, Belgium;

    Bermuda Institute of Ocean Studies, Bermuda;

    Royal Netherlands Institute of Sea Research, Den Burg, The Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    carbon dioxide; partial pressure; surface ocean; global ocean; sea-air flux;

    机译:二氧化碳;分压;海面全球海洋;海气通量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号