首页> 外文期刊>Deep-Sea Research >Morphology, structure, composition and build-up processes of the active channel-mouth lobe complex of the Congo deep-sea fan with inputs from remotely operated underwater vehicle (ROV) multibeam and video surveys
【24h】

Morphology, structure, composition and build-up processes of the active channel-mouth lobe complex of the Congo deep-sea fan with inputs from remotely operated underwater vehicle (ROV) multibeam and video surveys

机译:刚果深海风扇主动通道-嘴叶复合体的形态,结构,组成和堆积过程,来自遥控水下航行器(ROV)多光束和视频勘测的输入

获取原文
获取原文并翻译 | 示例
       

摘要

The detailed structure and composition of turbiditic channel-mouth lobes is still largely unknown because they commonly lie at abyssal water depths, are very thin and are therefore beyond the resolution of hull-mound acoustic tools. The morphology, structure and composition of the Congo turbiditic channel-mouth lobe complex (90x40 km; 2525 km(2)) were investigated with hull-mounted swath bathymetry, air gun seismics, 3.5 kHz sub bottom profiler, sediment piston cores and also with high-resolution multibeam bathymetry and video acquired with a Remote Operating Vehicle (ROV). The lobe complex lies 760 km off the Congo River mouth in the Angola abyssal plain between 4740 and 5030 m deep. It is active and is fed by turbidity currents that deposit several centimetres of sediment per century. The lobe complex is subdivided into five lobes that have prograded. The lobes are dominantly muddy. Sand represents ca. 13% of the deposits and is restricted to the feeding channel and distributaries. The overall lobe body is composed of thin muddy to silty turbidites. The whole lobe complex is characterized by in situ mass wasting (slumps, debrites). The 1-m-resolution bathymetry shows pervasive slidings and block avalanches on the edges of the feeding channel and the channel mouth indicating that sliding occurs early and continuously in the lobe build-up. Mass wasting is interpreted as a consequence of very-high accumulation rates, over-steepening and erosion along the channels and is therefore an intrinsic process of lobe building. The bifurcation of feeding channels is probably triggered when the gradient in the distributaries at the top of a lobe becomes flat and when turbidity currents find their way on the higher gradient on the lobe side. It may also be triggered by mass wasting on the lobe side. When a new lobe develops, the abandoned lobes continue to collect significant turbiditic deposits from the feeding channel spillover, so that the whole lobe complex remains active. A conceptual lithostratigraphic model is proposed for five morpho-sedimentary environments: lobe rims, lobe body, distributaries, levees, feeding channel. This study shows that high resolution bathymetry ROV observations are necessary to fully understand the build-up processes of modern channel-mouth lobes.
机译:湍流通道口裂片的详细结构和组成仍然是未知数,因为它们通常位于深海水深处,非常薄,因此超出了船体丘声学工具的分辨率。使用船体安装测深仪,气枪地震仪,3.5 kHz次底部测井仪,沉积物活塞芯以及其他方法,研究了刚果湍流通道-口裂片(90x40 km; 2525 km(2))的形态,结构和组成高分辨率多光束测深法和通过远程操作车辆(ROV)采集的视频。该波群位于安哥拉深渊平原的刚果河口附近760公里,深度介于4740至5030 m之间。它是活跃的,并由浑浊的水流喂养,每百年沉积几厘米的沉积物。肺叶复合体可细分为已发展的五个肺叶。肺叶主要是泥泞的。沙代表ca。 13%的沉积物,仅限于进料通道和分流器。整个叶片由稀薄的浑浊至粉质浊度组成。整个肺叶复合体的特征是原位大量浪费(塌陷,碎屑)。 1 m分辨率的测深仪显示了普遍的滑动,并且在进水通道和通道口的边缘出现了雪崩,这表明滑动在叶的形成过程中很早且连续发生。大量浪费是由于极高的堆积率,沿通道的过度加深和侵蚀造成的,因此是叶形成的固有过程。当波瓣顶部的分流器中的梯度变平并且浊度电流在波瓣侧的较高梯度处找到路径时,可能会触发进料通道的分叉。它也可能是由于瓣侧的质量浪费而触发的。当出现新的裂片时,废弃的裂片继续从进料通道溢出物中收集大量的浊浊沉积物,因此整个裂片复合体仍处于活动状态。针对五个形态沉积环境,提出了概念上的岩相地层学模型:叶轮缘,叶体,分流器,堤防,进料通道。这项研究表明,高分辨率测深法ROV观测对于充分了解现代海峡口裂谷的形成过程是必要的。

著录项

  • 来源
    《Deep-Sea Research》 |2017年第8期|25-49|共25页
  • 作者单位

    IFREMER, Ctr Brest, Unite Rech Geosci Marines, F-29280 Plouzane, France;

    Univ Brest, UMR Geosci Ocean 6538, UBO, Inst Univ Europeen Mer, Pl Copernic, F-29280 Plouzane, France;

    Univ Brest, UMR Geosci Ocean 6538, UBO, Inst Univ Europeen Mer, Pl Copernic, F-29280 Plouzane, France;

    IFREMER, Ctr Brest, Unite Rech Geosci Marines, F-29280 Plouzane, France|Univ Brest, UMR Geosci Ocean 6538, UBO, Inst Univ Europeen Mer, Pl Copernic, F-29280 Plouzane, France;

    IFREMER, Ctr Brest, Unite Rech Geosci Marines, F-29280 Plouzane, France|Univ Pau & Pays Adour, UMR 5150, Lab Fluides Complexes & Leurs Reservoirs, IPRA, BP 1155, F-64013 Pau, France;

    IFREMER, Ctr Brest, Unite Rech Geosci Marines, F-29280 Plouzane, France|Univ Brest, UMR Geosci Ocean 6538, UBO, Inst Univ Europeen Mer, Pl Copernic, F-29280 Plouzane, France;

    IFREMER, Ctr Brest, Unite Rech Geosci Marines, F-29280 Plouzane, France;

    IFREMER, Ctr Brest, Unite Rech Geosci Marines, F-29280 Plouzane, France;

    Ctr Sci & Tech Jean Feger, TOTAL, Ave Larribau, F-64018 Pau, France;

    IFREMER, Ctr Brest, Unite Rech Geosci Marines, F-29280 Plouzane, France;

    IFREMER, Ctr Brest, Unite Rech Etud Ecosyst Profonds, F-29280 Plouzane, France;

    IFREMER, Ctr Brest, Unite Rech Etud Ecosyst Profonds, F-29280 Plouzane, France|UMR CEA CNRS UVSQ, LSCE, F-91198 Gif Sur Yvette, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Congo deep-sea fan; Lobe; Lobe complex; Channel; Channel-Lobe Transition Zone; Angola basin; Slump; Slide; Debrite; Turbidite; ROV; Bathymetry; Seismic; Sediment core;

    机译:刚果深海扇;Lobe;Lobe复合体;航道;Channel-Lobe过渡带;安哥拉盆地;塌陷;滑移;碎屑;浊度;ROV;测深法;地震;沉积岩心;
  • 入库时间 2022-08-18 03:33:46

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号