首页> 外文期刊>Crop and Pasture Science >Estimations of vapour pressure deficit and crop water demand in APSIM and their implications for prediction of crop yield, water use, and deep drainage
【24h】

Estimations of vapour pressure deficit and crop water demand in APSIM and their implications for prediction of crop yield, water use, and deep drainage

机译:APSIM中蒸气压亏空和作物需水量的估计及其对预测作物产量,用水和深层排水的意义

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Vapour pressure deficit (VPD) has a significant effect on the amount of water required by the crop to maintain optimal growth. Data required to calculate the mean VPD on a daily basis are rarely available, and most models use approximations to estimate it. In APSIM (Agricultural Production Systems Simulator), VPD is estimated from daily maximum and minimum temperatures with the assumption that the minimum temperature equals dew point, and there is little change in vapour pressure or dew point during any one day. The accuracy of such VPD estimations was assessed using data collected every 15 min near Wagga Wagga in New South Wales, Australia. Actual vapour pressure of the air ranged from 0.5 to 2.5 kPa. For more than 75% of the time its variation was less than 20%, and the maximum variation was up to 50%. Daytime mean VPD ranged from 0 to 5.3 kPa. Daily minimum temperature was found to be a poor estimate of dew point temperature, being higher than dew point in summer and lower in winter. Thus the prediction of vapour pressure was poor. Vapour pressure at 0900 hours was a better estimate of daily mean vapour pressure. Despite the poor estimation of vapour pressure, daytime mean VPD was predicted reasonably well using daily maximum and minimum temperatures. If the vapour pressure at 0900 hours from the SILO Patched Point Dataset was used as the actual daily mean vapour pressure, the accuracy of daytime VPD estimation was further improved. Simulations using historical weather data for 1957–2002 show that such improved accuracy in daytime VPD estimation slightly increased simulated crop yield and deep drainage, while slightly reducing crop water uptake. Comparison of the APSIM RUE/TE and CERES-Wheat approaches for modelling potential transpiration revealed differences in crop water demand estimated by the two approaches. Although the differences had a small effect on the probability distribution of simulated long-term wheat yield, water uptake, and deep drainage, this finding highlights the need for a scientific re-appraisal of the APSIM RUE/TE and energy balance approaches for the estimation of crop demand, which will have implications for modelling crop growth under water-limited conditions and calculation of water required to maintain maximum growth.
机译:蒸气压亏缺(VPD)对作物维持最佳生长所需的水量有重要影响。很少有每天需要计算平均VPD的数据,并且大多数模型都使用近似值对其进行估算。在APSIM(农业生产系统模拟器)中,VPD是根据每日最高和最低温度估算的,假定最低温度等于露点,并且在任何一天中蒸气压或露点几乎没有变化。使用每15分钟在澳大利亚新南威尔士州Wagga Wagga附近收集的数据评估此类VPD估算的准确性。空气的实际蒸气压范围为0.5到2.5 kPa。在超过75%的时间内,其变化小于20%,最大变化高达50%。白天的VPD平均范围为0到5.3 kPa。发现每日最低温度不能很好地估计露点温度,夏季高于露点,冬季低于露点。因此,蒸气压的预测很差。 0900小时的蒸气压是对每日平均蒸气压的更好估计。尽管对蒸气压的估算很差,但使用每日最高和最低温度可以合理地预测日平均VPD。如果将来自SILO Patched Point Dataset的0900小时的蒸气压用作实际的每日平均蒸气压,则白天VPD估算的准确性将进一步提高。使用1957–2002年的历史天气数据进行的模拟显示,日间VPD估算的这种提高的准确性稍微增加了模拟作物的产量和深层排水,同时略有减少了作物的水分吸收。通过对APSIM RUE / TE和CERES-Wheat方法进行潜在蒸腾建模的比较,发现两种方法估计的作物需水量存在差异。尽管差异对模拟的长期小麦单产,水分吸收和深层排水的概率分布影响很小,但这一发现凸显了需要对APSIM RUE / TE和能量平衡方法进行科学的重新评估以进行估算作物需求的变化,这将对在缺水条件下的作物生长建模和计算维持最大生长所需的水量产生影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号