...
首页> 外文期刊>Croatica Chemica Acta >Resonant Recognition Model Defines the Secondary Structure of Bioactive Proteins
【24h】

Resonant Recognition Model Defines the Secondary Structure of Bioactive Proteins

机译:共振识别模型定义了生物活性蛋白的二级结构

获取原文
获取原文并翻译 | 示例
           

摘要

The Resonant Recognition Model (RRM) of protein bioactivity is applied to the protein secondary structure prediction. The method is based on the physical and mathematical model of the electron-ion interaction pseudopotential (EIIP) and uses signal analysis to interpret linear information contained in a macromolecular sequence. The method of analysis is based on a two-step procedure. Protein sequence is first transformed into a numerical series by means of the individual EIIP amino acid values. The second step of the model involves the Fourier spectral analysis of the obtained numerical series. Cosic et al. have shown that single frequency peaks of the spectrum define characteristic positions of the amino acids, i.e., hot spots, correlated to the biological function of the protein. We have analysed the secondary protein structure by comparing the patterns of 20 most prominent frequency peaks of the single-series Fourier RRM periodogram. The patterns within 140 nonhomologous α- and β(3-protein folds obtained from the Jpred and SCOP databases were analysed by means of the classification tree in order to obtain the algorithm for the α- and β-fold classification. This quick and simple procedure of the secondary fold prediction showed high accuracy of 98.55%. The stability of the tree algorithm solution was confirmed by jack-knife testing of the tree algorithm (mean error 2.6). This method of the secondary structure predic- tion is presented in more detail on a subset of 30 different cyto-kines, hormones, enzymes and viral proteins. Our results indicate that resonant spectral analysis of the protein primary amino acid sequence may be used to extract information about its secondary structure.
机译:蛋白质生物活性的共振识别模型(RRM)被应用于蛋白质二级结构预测。该方法基于电子-离子相互作用假电势(EIIP)的物理和数学模型,并使用信号分析来解释包含在大分子序列中的线性信息。分析方法基于两步过程。首先通过各个EIIP氨基酸值将蛋白质序列转化为数值序列。模型的第二步涉及对获得的数值序列进行傅立叶光谱分析。 Cosic等。已经表明,频谱的单频峰定义了与蛋白质的生物学功能相关的氨基酸的特征位置,即热点。我们通过比较单序列傅立叶RRM周期图的20个最突出的频率峰的模式来分析二级蛋白质结构。利用分类树分析了从Jpred和SCOP数据库获得的140个非同源α-和β(3-蛋白质折叠)中的模式,从而获得了α-和β-折叠分类的算法。二次折叠预测的准确率达到了98.55%,树算法的稳定性通过树算法的千斤顶试验得到了证实(平均误差2.6),这种二次结构预测的方法更加详细我们对30种不同的细胞因子,激素,酶和病毒蛋白的子集进行了分析,结果表明,蛋白质一级氨基酸序列的共振光谱分析可用于提取二级结构信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号