...
首页> 外文期刊>Corrosion science >Modeling of High-Temperature Corrosion of Zirconium Alloys Using the extended Finite Element Method (X-FEM)
【24h】

Modeling of High-Temperature Corrosion of Zirconium Alloys Using the extended Finite Element Method (X-FEM)

机译:延伸有限元法(X-FEM)建模锆合金高温腐蚀

获取原文
获取原文并翻译 | 示例

摘要

Oxidation modeling in modern nuclear fuel performance codes is currently limited by the lack of coupling with mechanics, thus preventing proper description of how high-temperature oxidation impacts mechanical properties. This is mostly due to the fact that the finite difference formalism adopted in corrosion models is incompatible with the direct coupling with mechanics in the finite element modeling employed in modern nuclear fuel performance codes. In this study, a physically based zirconium alloy corrosion model called the Coupled-Current Charge Compensation (C4) model, which was initially developed for operating temperature conditions, has been updated to include high-temperature corrosion in order to provide additional critical information (e.g., oxygen concentration profile) under loss-of-coolant accident (LOCA) conditions-information lacking in existing empirical models. The C4 model was implemented in the MOOSE finite-element framework developed at Idaho National Laboratory, enabling it to be used in the BISON nuclear fuel performance code based on the MOOSE framework. To precisely track the different interfaces at a relatively low computational cost, the eXtended Finite Element Method (X-FEM) was applied in MOOSE. The model's results were compared to those of existing empirical models as well as metallographic analysis of high-temperature oxidized Zircaloy-4 coupons. Oxygen diffusivities in the alpha and j3 phases resulting from this comparison closely agree with those found in the literature. The C4 model implemented with X-FEM in MOOSE now has the capability to accurately predict oxide, oxygenstabilized alpha, and prior j3 phase layer growth kinetics under isothermal exposure at high temperature (1000-1500 degrees C). Furthermore, in contrast with the empirical models, the C4 model accounts for the finite thickness of the fuel cladding. It can predict the oxygen concentration profile evolution through the whole cladding, enabling evaluation of the remaining ductile thickness-a crucial variable for modeling the mechanical behavior of the fuel cladding under LOCA. This implementation allows direct coupling with mechanics, at a low computing cost, using finite-element-based nuclear fuel performance codes such as BISON.
机译:现代核燃料绩效码中的氧化建模目前受到力学耦合缺失的限制,从而防止了对高温氧化如何影响机械性能的正确描述。这主要是由于腐蚀模型采用的有限差分形式与现代核燃料绩效代码中采用的有限元模型中的有限元建模中的直接耦合而不相容。在该研究中,已经更新了最初开发用于操作温度条件的耦合电流电荷补偿(C4)模型的物理上锆合金腐蚀模型,以包括高温腐蚀以提供额外的关键信息(例如,氧气浓度曲线)在冷却损失事故(LOCA)条件 - 现有经验模型中缺乏的信息。 C4模型是在爱达荷国家实验室开发的驼鹿有限元框架中实施的,使其在基于驼鹿框架的野牛核燃料绩效代码中使用。为了以相对较低的计算成本精确跟踪不同的接口,将延长的有限元方法(X-FEM)应用于驼鹿。将模型的结果与现有的经验模型以及高温氧化锆氧化锆4杯的金相分析进行了比较。由于这种比较,α和J3阶段的氧气扩散性与文献中的那些非常同意。用X-FEM实现的C4模型现在具有在高温下准确地预测氧化物,氧氧化α和先前的J3相层生长动力学(1000-1500℃)。此外,与经验模型相比,C4模型占燃料包层的有限厚度。它可以通过整个包层预测氧浓度曲线展开,从而能够评估剩余的延展厚度 - 用于建模燃料包层在基因座下的燃料包层的力学行为的关键变量。该实现允许以低计算成本与力学直接耦合,使用基于有限元的核燃料性能代码,例如北美野牛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号