首页> 外文期刊>Coordination chemistry reviews >Coordination and ligand exchange dynamics of solvated metal ions
【24h】

Coordination and ligand exchange dynamics of solvated metal ions

机译:溶剂化金属离子的配位和配体交换动力学

获取原文
获取原文并翻译 | 示例
       

摘要

Recent developments in computer speed and capacity have opened the access to highly accurate molecular dynamics simulations based on quantum mechanically calculated forces for the chemically relevant region around ions in solution (QM/MM formalism). This accuracy, although still extremely consuming (30-300 days of CP time per simulation), is needed for reliable structural details and ligand exchange rates. A large number of main group and transition metal ions have been investigated by this approach, giving very detailed insight into the properties of these ions in solution and allowing to classify the ions by various characteristics. Most first-row transition metal ions have a very stable first hexa-coordinated solvation shell, whose vibrational distortions, however, strongly influence the dynamics of the second shell. The dynamical Jahn-Teller effect - shown to be a femto- and picosecond phenomenon - can strongly influence ligand coordination and exchange dynamics. A large number of ions with very labile solvation shell such as most main group ions, but also transition metal ions, e.g. Ag(Ⅰ) and Hg(Ⅱ), can change their coordination within the picosecond scale, leading to an almost simultaneous presence of several species hardly accessible by present experimental techniques. Among these ions, the structure breakers are of particular interest, and it could be shown that there are two types of them, one with a large and very labile first coordination shell such as Cs(Ⅰ), the other characterised by a small first but an unusually large second solvation shell such as Au(Ⅰ). Investigations of metal ions coordinated to ammonia ligands have shown that coordination to hetero-atoms can accelerate the ligand exchange reaction rates by several orders of magnitude, e.g. for Cu(Ⅱ) and Ni(Ⅱ). Simulations of ions in aqueous ammonia gave a very detailed picture of the complexity of species almost simultaneously present and illustrate the enormous difficulties encountered when trying to fit X-ray or neutron diffraction data for such systems. In general, ligand exchange rates situated in the picosecond range are far below the NMR scale, and as femtosecond laser pulse spectroscopy could not be applied so far to ionic solutions, accurate simulations have become a very important tool to access structure and dynamics of solvated ions. A number of video clips supplied on the Web as supporting material illustrates the processes occurring in solutions of the metal ions.
机译:计算机速度和容量的最新发展为基于溶液中离子周围化学相关区域的量子力学计算力的高精度分子动力学模拟(QM / MM形式主义)提供了可能。尽管仍然非常耗费精度(每次模拟需要30-300天的CP时间),但是这种精确度对于可靠的结构细节和配体交换速率是必需的。通过这种方法已经研究了许多主族和过渡金属离子,可以非常详细地了解溶液中这些离子的性质,并可以根据各种特征对离子进行分类。大多数第一行过渡金属离子具有非常稳定的第一六配位溶剂化壳,但是其振动变形会强烈影响第二壳的动力学。动态的Jahn-Teller效应-显示为飞秒和皮秒现象-可以强烈影响配体的配位和交换动力学。具有非常不稳定的溶剂化壳的大量离子,例如大多数主族离子,还包括过渡金属离子,例如Ag(Ⅰ)和Hg(Ⅱ)可以在皮秒级内改变它们的配位,导致几乎同时存在的几种物种无法通过现有的实验技术获得。在这些离子中,结构破坏剂特别受关注,可以证明它们有两种类型,一种具有较大且非常不稳定的第一配位壳,例如Cs(Ⅰ),另一种具有较小的第一但一个异常大的第二溶剂化壳,例如Au(Ⅰ)。对与氨配体配位的金属离子的研究表明,对杂原子的配位可以使配体交换反应速率加快几个数量级,例如1,2,3,3,4,5,8,8,8,7,8,7,8,8,8,8和8。 Cu(Ⅱ)和Ni(Ⅱ)氨水中离子的模拟给出了几乎同时存在的物种复杂性的非常详细的图片,并说明了在尝试拟合此类系统的X射线或中子衍射数据时遇到的巨大困难。通常,皮秒范围内的配体交换速率远低于NMR范围,并且由于飞秒激光脉冲光谱技术到目前为止还不能应用于离子溶液,因此精确的模拟已成为访问溶剂化离子的结构和动力学的非常重要的工具。 。网络上作为支撑材料提供的许多视频剪辑都说明了在金属离子溶液中发生的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号