首页> 外文期刊>Coordination chemistry reviews >Applications of pulsed EPR spectroscopy to structural studies of sulftte oxidizing enzymes
【24h】

Applications of pulsed EPR spectroscopy to structural studies of sulftte oxidizing enzymes

机译:脉冲EPR光谱在硫酸盐氧化酶结构研究中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Sulfite oxidizing enzymes (SOEs), including sulflte oxidase (SO) and bacterial sulfite dehydrogenase (SDH), catalyze the oxidation of sulfite (SO_3~(2-)) to sulfate (SO_4~(2-)). The active sites of SO and SDH are nearly identical, each having a 5-coordinate, pseudo-square-pyramidal Mo with an axial oxo ligand and three equatorial sulfur donor atoms. One sulfur is from a conserved Cys residue and two are from a pyranopterindithiolene (molybdopterin, MPT) cofactor. The identity of the remaining equatorial ligand, which is solvent-exposed, varies during the catalytic cycle. Numerous in vitro studies, particularly those involving electron paramagnetic resonance (EPR) spectroscopy of the Mo(V) states of SOEs, have shown that the identity and orientation of this exchangeable equatorial ligand depends on the buffer pH, the presence and concentration of certain anions in the buffer, as well as specific point mutations in the protein. Until very recently, however, EPR has not been a practical technique for directly probing specific structures in which the solvent-exposed, exchangeable ligand is an O, OH~-, H_2O, SO_3~(2-), or SO_4~(2-) group, because the primary O and S isotopes (~(16)O and ~(32)S) are magnetically silent (I=O). This review focuses on the recent advances in the use of isotopic labeling, variable-frequency high resolution pulsed EPR spectroscopy, synthetic model compounds, and DFT calculations to elucidate the roles of various anions, point mutations, and steric factors in the formation, stabilization, and transformation of SOE active site structures.
机译:亚硫酸盐氧化酶(SOE),包括硫酸盐氧化酶(SO)和细菌亚硫酸盐脱氢酶(SDH),催化亚硫酸盐(SO_3〜(2-))氧化为硫酸盐(SO_4〜(2-))。 SO和SDH的活性位几乎相同,每个活性位具有5个坐标的伪方形金字塔型Mo,带有轴向氧代配体和三个赤道硫供体原子。一种硫来自保守的Cys残基,另一种硫来自吡喃二蝶硫酮(钼蝶呤,MPT)辅因子。暴露于溶剂中的其余赤道配体的身份在催化循环中会有所不同。大量的体外研究,尤其是那些涉及国有企业Mo(V)状态的电子顺磁共振(EPR)光谱的研究,表明这种可交换的赤道配体的身份和取向取决于缓冲液的pH值,某些阴离子的存在和浓度在缓冲液中,以及蛋白质中的特定点突变。然而,直到最近,EPR仍不是直接探测特定结构的实用技术,在该结构中,溶剂暴露的可交换配体是O,OH〜-,H_2O,SO_3〜(2-)或SO_4〜(2- )组,因为主要的O和S同位素(〜(16)O和〜(32)S)处于磁性静默状态(I = O)。这篇综述着重于同位素标记,可变频率高分辨率脉冲EPR光谱,合成模型化合物和DFT计算的最新进展,以阐明各种阴离子,点突变和位阻因素在形成,稳定化,和国有企业活动场所结构的转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号