首页> 外文学位 >Application of EPR spectroscopy to study the resting state structure and the mechanism of Mycobacterium tuberculosis catalase-peroxidase (KatG).
【24h】

Application of EPR spectroscopy to study the resting state structure and the mechanism of Mycobacterium tuberculosis catalase-peroxidase (KatG).

机译:EPR光谱技术在研究结核分枝杆菌过氧化氢酶过氧化物酶(KatG)的静止状态结构及其机理中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Mycobacterium tuberculosis (M. tuberculosis ) catalase-peroxidase (KatG) is a dimeric Class I heme peroxidase whose activity is implicated for the activation of the anti-tuberculosis antibiotic isoniazid (INH).; The catalytic function and the structure of this enzyme have been examined using rapid freeze-quench (RFQ and low temperature X-band EPR spectroscopy.; The enzyme exhibits catalytic properties that differ from the Class I peroxidases. The reaction of ferric KatG with peroxyacetic acid was followed using RFQ-EPR (77 K). A doublet EPR signal appears within 6.4 ms after mixing and at time points through hundreds of milliseconds. Thereafter, a singlet signal develops and finally predominates after 1 s. Simulation of EPR spectra and isotope labeling experiments assigned both doublet and singlet EPR signals to tyrosyl radical(s). A two-state model was found to be adequate to describe the kinetics of evolution of the EPR signal from doublet to singlet observed in X-band data while High Field EPR results suggest that a distribution of orientations are present.; Single amino acid replacements in KatG have been investigated as a direct approach to identify the tyrosine residues at which the radical(s) is formed. RFQ-EPR spectroscopy confirms that tyrosine Y353, unique to M. tuberculosis KatG, is the amino acid at which a tyrosyl radical is formed upon turnover with peroxides. Moreover, residue Y229, which is involved in the formation of a newly defined Met-Tyr-Trp adduct in the active site of catalase-peroxidase, is shown to be important for preserving the catalase activity of KatG.; Low temperature EPR studies of ferric KatG, supported by optical and Raman data, suggest that different factors, such as water and other ligand binding, protonation state of the distal imidazole and incomplete adduct formation, are responsible for the heme iron structural heterogeneity observed in the WT enzyme. Coordination of the ferric iron and the geometry of the active site are influenced by small molecules such as INH, which binds at a special binding site removed from the heme. Moreover, alterations in the region of Ser315, whether induced by mutation or INH binding, affect the hydrogen bonding network on the distal side of the heme.
机译:结核分枝杆菌 M。tuberculosis )过氧化氢酶过氧化物酶(KatG)是二聚体I类血红素过氧化物酶,其活性与抗结核抗生素异烟肼(INH)的激活有关。 )。已使用快速冷冻猝灭(RFQ和低温X波段EPR光谱)检查了该酶的催化功能和结构;该酶显示出与I类过氧化物酶不同的催化特性。KatG铁与过氧乙酸的反应然后使用RFQ-EPR(77 K),在混合后6.4毫秒内出现数百倍的EPR信号,并在数百毫秒的时间点出现此信号,此后出现单峰信号,并在1 s后最终占主导地位。EPR光谱和同位素标记的模拟实验将二重态和单重态EPR信号都分配给了酪氨酸基团,发现了一个二态模型足以描述在X波段数据中观察到的EPR信号从二重态到单重态的演化动力学,而高场EPR结果提示存在方向分布;已经研究了KatG中的单个氨基酸替代,作为鉴定辐射中酪氨酸残基的直接方法形成校准。 RFQ-EPR光谱证实了 M特有的酪氨酸Y353。结核病Katital,是与过氧化物交换后形成酪氨酰自由基的氨基酸。此外,残基Y229与过氧化氢酶过氧化物酶活性位点中新定义的Met-Tyr-Trp加合物的形成有关,对保持KatG的过氧化氢酶活性很重要。光学和拉曼数据支持的KatG铁的低温EPR研究表明,不同的因素(如水和其他配体结合,末端咪唑的质子化状态和不完全的加合物形成)是导致在血红素铁结构异质性的原因。 WT酶。铁的配位和活性位点的几何形状受小分子(例如INH)的影响,INH在从血红素中去除的特殊结合位点结合。此外,Ser315区域的变化,无论是由突变还是INH结合引起,都会影响血红素远端的氢键网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号