首页> 外文期刊>Coordination chemistry reviews >Rigid scaffolds for the design of molecular catalysts and biomimetic active sites: A case study of anthracene-based ligands for modeling mono-iron hydrogenase (Hmd)
【24h】

Rigid scaffolds for the design of molecular catalysts and biomimetic active sites: A case study of anthracene-based ligands for modeling mono-iron hydrogenase (Hmd)

机译:用于分子催化剂和仿生活性位点设计的刚性支架:基于蒽的配体建模单铁氢化酶的案例研究

获取原文
获取原文并翻译 | 示例
       

摘要

Herein we examine the use of scaffold-based ligands for organometallic catalysis and bio-inorganic modeling studies. The use of scaffolds in catalyst development and complex design stems from researchers' desire to install specific donor geometries (e.g., cis vs trans, fac vs mer) to generate desired structures and corresponding reactivities in mononuclear metal complexes. Starting from the use of polyaryl ligands for asymmetric catalysis (primarily Ru), we review successive implementations of scaffold-based ligands of ever-increasing complexity. Particular attention is paid to rigidly planar anthracene-based (and related) ligands that support both precious metal (Pd, Rh, Re) and base metal (Mn, Fe) centers in structural and reactivity studies. Previous work in scaffold design by others (Lu, Gelman) is considered in concert with our own contributions to this field. Ultimately, the complexity of such scaffolds has evolved to include non-symmetric anthracene scaffolds relevant to bio-inorganic synthetic modeling. As an illustrative example, work regarding the enzyme mono-iron hydrogenase is documented, wherein the ligand scaffold provides a biomimetic CNS chelate (containing an organometallic acyl-C donor) for structural and functional synthetic models. A quantitative analysis of structural relationships among torsion angles, donor atom distances, and bite angles of the ligand systems and resulting metal complexes is presented. This provides a foundation for a rational, target-driven syntheses of metal complexes derived from rigid, tricyclic scaffold ligands. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文中,我们研究了基于支架的配体在有机金属催化和生物无机模型研究中的应用。在催化剂的开发和复杂设计中使用支架的原因是研究人员希望安装特定的供体几何形状(例如,顺式,反式,fac与mer)以在单核金属配合物中生成所需的结构和相应的反应性。从使用聚芳基配体进行不对称催化(主要是Ru)开始,我们回顾了不断增加的复杂性的基于支架的配体的连续实现。特别注意在结构和反应性研究中同时支持贵金属(Pd,Rh,Re)和贱金属(Mn,Fe)中心的刚性平面蒽基(及相关)配体。其他人(Lu,Gelman)在脚手架设计方面的先前工作被认为与我们在该领域的贡献相一致。最终,这种支架的复杂性已经演变为包括与生物-无机合成模型有关的非对称蒽骨架。作为说明性实例,记录了关于酶单铁氢化酶的工作,其中配体支架为结构和功能合成模型提供了仿生的CNS螯合物(包含有机金属酰基C供体)。定量分析了扭转角,供体原子距离和配体系统的咬合角与所得金属配合物之间的结构关系。这为衍生自刚性三环支架配体的金属配合物进行合理的,目标驱动的合成奠定了基础。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Coordination chemistry reviews》 |2017年第12期|295-308|共14页
  • 作者单位

    Univ Texas Austin, Dept Chem, 1 Univ Stn,A5300, Austin, TX 78712 USA;

    Univ Texas Austin, Dept Chem, 1 Univ Stn,A5300, Austin, TX 78712 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:00:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号