...
首页> 外文期刊>IEEE Transactions on Control Systems Technology >Modeling the Biological Nanopore Instrument for Biomolecular State Estimation
【24h】

Modeling the Biological Nanopore Instrument for Biomolecular State Estimation

机译:用于生物分子状态估计的生物纳米孔仪器的建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The nanopore is a powerful tool for probing biomolecular interactions at the single-molecule level, and shows great promise commercially as a next-generation deoxyribonucleic acid (DNA) sequencing technology. Coupling active voltage control with the nanopore has expanded its capabilities, for example, by allowing precise manipulation of DNA–enzyme complexes at millisecond timescales. However, any change in voltage excites capacitance in the system and results in masking the molecule's contribution to the measured current. To improve active control capabilities, a method is needed for continuous monitoring of the molecule's contribution to the current during voltage-varying experiments. The method must be able to separate the capacitive effects from the channel conductance, which is the parameter that can be used to infer the state of the molecule in the pore. The contributions of this paper are: 1) to develop a dynamic model of the nanopore instrument which includes capacitance and conductance parameters and 2) to develop model-based algorithms for estimating the conductance parameter during voltage varying experiments. First, grey- and black-box state-space models are estimated and compared using nanopore experimental data and system identification tools. Next, a validated grey-box model is used to derive two methods for estimating the channel conductance under voltage-varying conditions: one based on least-squares, and one based on the extended Kalman filter. In simulations and experiments, the Kalman filter outperforms the simpler least-squares method.
机译:纳米孔是探测单分子水平生物分子相互作用的有力工具,作为下一代脱氧核糖核酸(DNA)测序技术在商业上显示出巨大的希望。主动电压控制与纳米孔的耦合已扩展了其功能,例如,允许在毫秒级的时间内精确操纵DNA-酶复合物。但是,任何电压变化都会激发系统中的电容,并导致掩盖分子对测量电流的影响。为了提高主动控制能力,需要一种在电压变化实验过程中连续监测分子对电流贡献的方法。该方法必须能够将电容效应与通道电导分开,该电导是可以用来推断孔中分子状态的参数。本文的贡献是:1)开发包括电容和电导参数的纳米孔仪器的动态模型,以及2)开发基于模型的算法来估算电压变化实验期间的电导参数。首先,使用纳米孔实验数据和系统识别工具估算并比较灰盒和黑盒状态空间模型。接下来,使用经过验证的灰箱模型来推导两种在电压变化条件下估算通道电导的方法:一种基于最小二乘,另一种基于扩展的卡尔曼滤波器。在仿真和实验中,卡尔曼滤波器的性能优于简单的最小二乘法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号