...
首页> 外文期刊>IEEE Transactions on Control Systems Technology >Closed-Loop Control of Combustion Initiation and Combustion Duration
【24h】

Closed-Loop Control of Combustion Initiation and Combustion Duration

机译:燃烧启动和燃烧持续时间的闭环控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

When high levels of cooled external exhaust gas recirculation (EGR) are used to increase engine efficiency, the laminar flame speed during the flame initiation period is reduced and the combustion duration is elongated. The reduction in flame propagation speed together with the increase in cycle-to-cycle variability makes the combustion process prone to failure of flame initiation (misfire) or slow burning rates. A highly visited operating speed/load point is used to investigate the feedback control of spark advance (SA) and EGR valve. A decentralized proportional-integral (PI) controller and a centralized linear quadratic Gaussian (LQG) controller are designed to maintain a desired combustion initiation and duration that indirectly ensures a proper flame kernel initiation and flame propagation. A simple control-oriented combustion model is derived from system identification to perform simulation and linear analysis of the closed-loop (CL) system. Experimental validation of the controllers shows that the LQG performs better in transients and produces the least amount of cycle-to-cycle variability in CL operation. Analysis of the linearized system in frequency domain shows that a multivariable architecture is required to handle the input-output coupling efficiently. Sensitivity analysis of PI and LQG controllers under gain variability is reported to guide the tuning process, which also influences the cycle-to-cycle variability. The two-input two-output controllers designed in this paper are compared with a single-input single-output (SISO) controller designed to only adjust SA for the maximum brake torque. When the EGR valve is adjusted based on a lookup table, uncertainty in the EGR-rate will directly affect the combustion duration for which the SISO controller alone cannot handle. In conclusion, a coordinated spark and EGR controller based on the measured combustion features is deemed to be required for combustion control under diluted conditions.
机译:当使用高水平的冷却外部废气再循环(EGR)来提高发动机效率时,燃烧期间的层状火焰速度降低,并且燃烧持续时间伸长。火焰传播速度的降低以及循环到循环变异性的增加使得燃烧过程容易出现火焰起始(失火)或缓慢燃烧速率。高度访问的操作速度/负载点用于研究火花前置(SA)和EGR阀的反馈控制。分散的比例积分(PI)控制器和集中式线性二次高斯(LQG)控制器被设计为保持所需的燃烧启动和持续时间,间接地确保适当的火焰核启动和火焰传播。以系统识别导出了一种简单的控制燃烧模型,以执行闭环(CL)系统的仿真和线性分析。控制器的实验验证表明,LQG在瞬变中执行更好,并在CL操作中产生最少的循环变异性。频域中线性化系统的分析表明,需要有效地处理输入输出耦合所需的多变量体系结构。据报道,PI和LQG控制器的灵敏度分析引导调谐过程,这也影响了周期到循环变异性。将本文设计的两输入两输出控制器与单输入单输出(SISO)控制器进行比较,该控制器设计用于仅调整SA,用于最大制动扭矩。当基于查找表进行调整EGR阀时,EGR率的不确定性将直接影响SISO控制器单独处理的燃烧持续时间。总之,基于测量的燃烧特征的协调火花和EGR控制器被认为是在稀释条件下燃烧控制所必需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号