首页> 外文期刊>Contributions to Plasma Physics >Modelling of JET Diagnostics Using Bayesian Graphical Models
【24h】

Modelling of JET Diagnostics Using Bayesian Graphical Models

机译:使用贝叶斯图形模型对JET诊断进行建模

获取原文
获取原文并翻译 | 示例
           

摘要

Modern nuclear fusion experiments utilise a large number of sophisticated plasma diagnostics, which are sensitive to overlapping subsets of the physics parameters of interest. The mapping between the set of all physics pa-rameters (the plasma ‘state’) and the raw observations of each diagnostic, will depend on the particular physics model used, and will also be inherently probabilistic. Uncertainty enters into the mapping between model parameters and observations through the inability of most models to predict the precise value of an observation, and also through aspects of the diagnostic itself, such as calibrations, instrument functions etc. To optimally utilise observations from multiple diagnostics and properly deal with all aspects of model uncertainties is very difficult with today's data analysis infrastructures. For this work, the Minerva analysis framework [1, 2] has been used, which implements a flexible and general way of modelling and carrying out analysis on this type of interconnected probabilistic systems by modelling of diagnostics, physics models and their dependencies through the use of Bayesian graphical models [3]. To date about 10 diagnostic systems have been modelled in this way at JET, which has already led to a number of new results, including the reconstruction of flux surface topology and q-profiles without an equilibrium assumption [4], profile inversions including uncertainty in the positions of flux surfaces, first experimental verification of relativistic effects to explain polarimetry measurements [5], and a substantial increase in accuracy of JET electron density and temperature profiles, including improved pedestal resolution, through the joint analysis of three different diagnostic systems [6] (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
机译:现代核聚变实验利用了大量复杂的等离子体诊断技术,这些诊断技术对感兴趣的物理参数的重叠子集很敏感。所有物理参数集(血浆“状态”)与每个诊断程序的原始观测值之间的映射将取决于所使用的特定物理模型,并且也具有固有的概率。不确定性是由于大多数模型无法预测观测值的精确值以及诊断本身的方面(例如校准,仪器功能等)而导致的,从而进入模型参数与观测值之间的映射。在当今的数据分析基础架构中,正确处理模型不确定性的各个方面非常困难。对于这项工作,使用了Minerva分析框架[1,2],该框架通过诊断,物理模型及其相关性的建模,实现了一种灵活的通用建模方法,可以对这种类型的互连概率系统进行建模和分析。贝叶斯图形模型[3]。迄今为止,在JET上已经以这种方式对大约10个诊断系统进行了建模,这已经产生了许多新结果,包括在没有平衡假设的情况下重建磁通表面拓扑和q轮廓[4],包括不确定性在内的轮廓反转。通量表面的位置,首先通过相对论效应的实验验证来解释偏振测量[5],并且通过对三种不同诊断系统的联合分析,JET电子密度和温度曲线的准确性大大提高,包括改善的基座分辨率[6] ](©2011 WILEY-VCH Verlag GmbH&Co. KGaA,Weinheim)

著录项

  • 来源
    《Contributions to Plasma Physics》 |2011年第3期|p.152-157|共6页
  • 作者单位

    Max-Planck-Institut für Plasmaphysik, Teilinsitut Greifswald, EURATOM-Assoziation, D-17491, Greifswald, Germany;

    Blackett Laboratory, Imperial College, London SW7 2BZ, UK;

    Association EURATOM/CCFE, Culham Science Centre, OX14 3DB, Abingdon, UK;

    Association EURATOM/CCFE, Culham Science Centre, OX14 3DB, Abingdon, UK;

    Max-Planck-Institut für Plasmaphysik, Teilinsitut Greifswald, EURATOM-Assoziation, D-17491, Greifswald, Germany;

    Association EURATOM/CCFE, Culham Science Centre, OX14 3DB, Abingdon, UK;

    Association EURATOM/CCFE, Culham Science Centre, OX14 3DB, Abingdon, UK;

    Association EURATOM/CCFE, Culham Science Centre, OX14 3DB, Abingdon, UK;

    JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK|;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bayesian modelling; JET; diagnostics; virtual diagnostics;

    机译:贝叶斯建模;JET;诊断;虚拟诊断;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号