首页> 外文期刊>Construction and Building Materials >Sensitivity analysis frameworks for mechanistic-empirical pavement design of continuously reinforced concrete pavements
【24h】

Sensitivity analysis frameworks for mechanistic-empirical pavement design of continuously reinforced concrete pavements

机译:连续钢筋混凝土路面力学-经验路面设计的灵敏度分析框架

获取原文
获取原文并翻译 | 示例
           

摘要

The new AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) performance predictions for the anticipated climatic and traffic conditions depend on the values of the numerous input parameters that characterize the pavement materials, layers, design features, and condition. This paper proposes comprehensive local sensitivity analyses (LSA) and global sensitivity analyses (GSA) methodologies to evaluate continuously reinforced concrete pavement (CRCP) performance predictions with MEPDG inputs under various climatic and traffic conditions. A design limit normalized sensitivity index (NSI) was implemented in both LSA and GSA to capture quantitative as well as qualitative sensitivity information. The GSA varied all inputs simultaneously across the entire problem domain while the LSA varied each input independently in turn. Correlations among MEPDG inputs were considered where appropriate in GSA. Two response surface modeling (RSM) approaches, multivariate linear regressions (MVLR) and artificial neural networks (ANN or NN), were developed to model the GSA results for evaluation of MEPDG CRCP input sensitivities across the entire problem domain. The ANN-based RSMs not only provide robust and accurate representations of the complex relationships between MEPDG inputs and distress outputs but also capture the variation of sensitivities across the problem domain. The NSI proposed in LSA and GSA provides practical interpretation of sensitivity relating a given percentage change in a MEPDG input to the corresponding percentage change in predicted distress relative to its design limit value. The "mean plus/minus two standard deviations (μ + 2σ)" GSA-NSI metric (GSA-NSI_(μ±2σ)) derived from ANN RSM statistics is the best and most robust design input ranking measure since it incorporates both the mean sensitivity and the variability of sensitivity across the problem domain.
机译:针对预期气候和交通状况的新AASHTO机械-经验路面设计指南(MEPDG)性能预测取决于表征路面材料,层,设计特征和状况的众多输入参数的值。本文提出了综合的局部敏感性分析(LSA)和全局敏感性分析(GSA)方法,以评估MEPDG在各种气候和交通条件下的连续钢筋混凝土路面(CRCP)性能预测。 LSA和GSA均采用了设计极限标准化灵敏度指数(NSI),以捕获定量和定性灵敏度信息。 GSA在整个问题域中同时更改所有输入,而LSA依次独立更改每个输入。在GSA中酌情考虑了MEPDG输入之间的相关性。开发了两种响应面建模(RSM)方法,多元线性回归(MVLR)和人工神经网络(ANN或NN)来对GSA结果进行建模,以评估整个问题域中MEPDG CRCP输入的敏感性。基于ANN的RSM不仅可以可靠,准确地表示MEPDG输入和遇险输出之间的复杂关系,而且可以捕获整个问题域中灵敏度的变化。 LSA和GSA中提出的NSI提供了对灵敏度的实用解释,该灵敏度将MEPDG输入中给定的百分比变化与预测的遇险相对于其设计极限值的相应百分比变化相关。从ANN RSM统计数据得出的“平均加/减两个标准偏差(μ+2σ)” GSA-NSI度量(GSA-NSI_(μ±2σ))是最好和最可靠的设计输入排名度量,因为它同时包含了均值和均值。敏感度以及整个问题域中敏感度的可变性。

著录项

  • 来源
    《Construction and Building Materials》 |2014年第30期|498-508|共11页
  • 作者单位

    406 Town Engineering Building, Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, USA;

    24 Town Engineering Building, Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, USA;

    354 Town Engineering Building, Department of Civil Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, USA;

    0147C Glenn L. Martin Hall, Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA;

    0147C Glenn L. Martin Hall, Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Concrete; Pavement; Sensitivity analyses; Design; AASHTO;

    机译:具体;路面;灵敏度分析;设计;阿什托;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号