首页> 外文期刊>Construction and Building Materials >An analytical calculation method for displacement and force on continuous welded rails in temperature-transition zone
【24h】

An analytical calculation method for displacement and force on continuous welded rails in temperature-transition zone

机译:温度过渡区连续焊轨位移和力的解析计算方法

获取原文
获取原文并翻译 | 示例
       

摘要

The rails at the transition between a bridge or subgrade and a tunnel tend to creep longitudinally because of a temperature gradient on the rail, which can cause irregularity in the track. The longitudinal temperature distribution along the rail and the longitudinal resistance of the fasteners are the main influences on rail creep. In this paper, the linear and nonlinear models of longitudinal temperature distribution on rails and the longitudinal resistance of fasteners are tested for their accuracy in predicting rail creep. By researching the rail at the temperature-transition zone, differential equations for the longitudinal displacement and force of the rail are established. To predict the changes that a rail will experience in a temperature-transition zone, expressions for the longitudinal displacement and force are derived from these differential equations. The derived calculation scheme is tested for three conditions: linear models of both rail temperature and longitudinal resistance, linear rail temperature and nonlinear resistance, and nonlinear models of both rail temperature and displacement. The maximum longitudinal rail displacement and the maximum longitudinal additional force in all three conditions are compared to reveal the influence of the maximum temperature force gradient multiple and the maximum fastener resistance on longitudinal displacement. (C) 2019 Elsevier Ltd. All rights reserved.
机译:桥或路基与隧道之间的过渡处的钢轨由于钢轨上的温度梯度而倾向于纵向蠕变,这可能会导致钢轨不平整。沿轨道的纵向温度分布和紧固件的纵向阻力是对轨道蠕变的主要影响。在本文中,测试了轨道上纵向温度分布的线性和非线性模型以及紧固件的纵向阻力,以预测它们在预测轨道蠕变方面的准确性。通过研究钢轨的温度过渡区,建立了钢轨的纵向位移和力的微分方程。为了预测轨道在温度转变区域中将经历的变化,从这些微分方程式中得出了纵向位移和力的表达式。对导出的计算方案进行了三种条件的测试:轨道温度和纵向电阻的线性模型,轨道温度和非线性电阻的线性模型,以及轨道温度和位移的非线性模型。比较了所有三种情况下的最大纵向导轨位移和最大纵向附加力,以揭示最大温度力梯度倍数和最大紧固件阻力对纵向位移的影响。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Construction and Building Materials》 |2019年第20期|228-237|共10页
  • 作者单位

    Cent S Univ, Sch Civil Engn, Railway Campus,22 Shao Shan Nan Rd, Changsha 410075, Hunan, Peoples R China;

    Cent S Univ, Sch Civil Engn, Railway Campus,22 Shao Shan Nan Rd, Changsha 410075, Hunan, Peoples R China;

    Cent S Univ, Sch Civil Engn, Railway Campus,22 Shao Shan Nan Rd, Changsha 410075, Hunan, Peoples R China|Southwest Jiaotong Univ, State Key Lab Tract Power, Chengdu 610031, Sichuan, Peoples R China;

    Guangzhou Metro Design & Res Inst Co Ltd, Guangzhou 510000, Guangdong, Peoples R China;

    Guangzhou Metro Design & Res Inst Co Ltd, Guangzhou 510000, Guangdong, Peoples R China;

    Guangzhou Metro Design & Res Inst Co Ltd, Guangzhou 510000, Guangdong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Analytical calculation method; Longitudinal displacement; Longitudinal additional force; Temperature-transition zone; Continuous welded rail;

    机译:解析计算方法;纵向位移;纵向附加力;温度过渡带;连续焊接钢轨;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号