...
首页> 外文期刊>Computers, Materials & Continua >Residual Correction Procedure with Bernstein Polynomials for Solving Important Systems of Ordinary Differential Equations
【24h】

Residual Correction Procedure with Bernstein Polynomials for Solving Important Systems of Ordinary Differential Equations

机译:伯恩斯坦多项式求解常微分方程重要系统的剩余校正过程

获取原文
获取原文并翻译 | 示例

摘要

One of the most attractive subjects in applied sciences is to obtain exact or approximate solutions for different types of linear and nonlinear systems. Systems of ordinary differential equations like systems of second-order boundary value problems (BVPs), Brusselator system and stiff system are significant in science and engineering. One of the most challenge problems in applied science is to construct methods to approximate solutions of such systems of differential equations which pose great challenges for numerical simulations. Bernstein polynomials method with residual correction procedure is used to treat those challenges. The aim of this paper is to present a technique to approximate solutions of such differential equations in optimal way. In it, we introduce a method called residual correction procedure, to correct some previous approximate solutions for such systems. We study the error analysis of our given method. We first introduce a new result to approximate the absolute solution by using the residual correction procedure. Second, we introduce a new result to get appropriate bound for the absolute error. The collocation method is used and the collocation points can be found by applying Chebyshev roots. Both techniques are explained briefly with illustrative examples to demonstrate the applicability, efficiency and accuracy of the techniques. By using a small number of Bernstein polynomials and correction procedure we achieve some significant results. We present some examples to show the efficiency of our method by comparing the solution of such problems obtained by our method with the solution obtained by Runge-Kutta method, continuous genetic algorithm, rational homotopy perturbation method and adomian decomposition method.
机译:应用科学中最具吸引力的科目之一是为不同类型的线性和非线性系统获得精确或近似的解决方案。普通微分方程的系统,如二阶边值问题(BVPS),布鲁塞尔系统和僵硬系统中的系统在科学和工程中都很重要。应用科学中最挑战的问题之一是构建方法,以构建近似的微分方程系统的解决方案,这对数值模拟产生了巨大挑战的挑战。伯恩斯坦多项式方法采用残留校正程序来治疗这些挑战。本文的目的是提出一种以最佳方式对这种微分方程的解近似的技术。在其中,我们介绍了一种称为残差校正过程的方法,以纠正这种系统的先前近似解决方案。我们研究了我们给定方法的错误分析。我们首先介绍一种新的结果,通过使用残差校正过程来近似绝对解决方案。其次,我们介绍了一个新的结果,以获得绝对错误的适当界限。使用搭配方法,可以通过应用Chebyshev根来找到搭配点。这两种技术都简要解释了说明性示例,以证明技术的适用性,效率和准确性。通过使用少数伯尔尼斯坦多项式和校正程序,我们达到了一些显着的结果。我们展示了一些示例来展示我们的方法的效率,通过比较我们的方法获得的液体通过速率-Kutta方法,连续遗传算法,合理同型扰动方法和Adomian分解方法获得的方法。

著录项

  • 来源
    《Computers, Materials & Continua 》 |2020年第1期| 63-80| 共18页
  • 作者单位

    Department of Applied Mathematics Abu Dhabi University Abu Dhabi United Arab Emirates;

    Department of Mathematics and General Courses Prince Sultan University Riyadh 11586 Saudi Arabia Department of Medical Research China Medical University Hospital China Medical University Taichung 40402 Taiwan Department of M-Commerce and Multimedia Applications Asia University Taichung 41354 Taiwan;

    School of Mathematical Sciences Universiti Kebangsaan Malaysia Bangi 43600 UK.M Malaysia;

    Department of Applied Mathematics Abu Dhabi University Abu Dhabi United Arab Emirates;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bernstein polynomials; residual correction; Runge-Kutta method; stiff system;

    机译:伯恩斯坦多项式;剩余纠正;Runge-Kutta方法;僵硬的系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号