首页> 外文期刊>Computers & geosciences >A complex network theoretic approach for interdependence investigation: An application to radionuclide behavior in the subsurface
【24h】

A complex network theoretic approach for interdependence investigation: An application to radionuclide behavior in the subsurface

机译:相互依存调查的复杂网络理论方法:应用于地下的放射性核素行为的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The failure of uranium mine tailings dams results in the infiltration and spreading of tailings in the subsurface. The fate and transport of radionuclides in the subsurface depends on several confounding, complex interdependent factors that describe the elements of the integrated system (i.e., meteorological; hydrological; hydrogeological; and, soil, groundwater, and mine tailings chemistry). The factors describing the integrated system have typically been investigated independently; however, their interdependence and resulting collective influence on the subsurface migration of radionuclides are yet to be explored. The current study develops a complex network theoretical approach to analyze these interdependencies. In this respect, a network of factors (NoF) was developed, and its characteristics (e.g., diameter, density, characteristic pathlength, average clustering coefficient, and factor centrality measures) were evaluated to determine the importance of considering these interdependencies when developing radionuclide fate and transport models. A sensitivity analysis was subsequently performed on the NoF to characterize the propagation of uncertainty associated with the factors in the NoF through a fate and transport model. The sensitivity analysis indicated that microorganisms present in the soil and mine tailings, fraction of organic carbon in the soil matrix, infiltration, and transmissivity must be well characterized (i.e., to minimize their uncertainty) when developing an integrated subsurface radionuclide fate and transport model, as uncertainty in these parameters will be amplified in the model output. The NoF developed in this study can be used to allocate data collection resources strategically in order to minimizing uncertainty in fate and transport models. This improves the reliability of fate and transport models, and ultimately leads to better management and remediation strategies to mitigate impacts from UMTD failures.
机译:铀矿尾矿坝的失败导致尾矿中尾矿的渗透和扩散。地下放射性核素的命运和运输取决于描述综合系统的元素的几种混淆,复杂的相互依赖因素(即气象;水文;水文地质;和土壤,地下水和矿井尾矿化学)。描述了描述集成系统的因素通常是独立调查的;然而,他们的相互依存和导致对放射性核素的地下迁移的集体影响尚未探索。目前的研究开发了一种复杂的网络理论方法来分析这些相互依赖性。在这方面,开发了一种因素网络(NOF),并且评估其特征(例如,直径,密度,特征,平均聚类系数和因子中心测量),以确定在开发放射性核素命运时考虑这些相互依赖性的重要性和运输模型。随后对NOF进行了灵敏度分析,以表征通过命运和运输模型表征与NOF中的因子相关的不确定性的传播。敏感性分析表明,当开发综合地下放射核素命运和运输模型时,敏感性分析存在于土壤和矿山尾矿中,有机碳,渗透和透射率的有机碳的一部分必须很好地(即最小化它们的不确定性)由于这些参数中的不确定性将在模型输出中放大。本研究开发的NOF可用于战略性地分配数据收集资源,以最大限度地减少命运和运输模型中的不确定性。这提高了命运和运输模型的可靠性,最终导致更好的管理和修复策略,以减轻UMTD失败的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号