首页> 外文期刊>Computers & geosciences >An efficient implementation of 3D high-resolution imaging for large-scale seismic data with GPU/CPU heterogeneous parallel computing
【24h】

An efficient implementation of 3D high-resolution imaging for large-scale seismic data with GPU/CPU heterogeneous parallel computing

机译:GPU / CPU异构并行计算可有效实现大规模地震数据的3D高分辨率成像

获取原文
获取原文并翻译 | 示例
       

摘要

De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.
机译:脱吸收叠前时间偏移(QPSTM)通过引入有效的Q参数来补偿地震波的吸收和分散,从而使其成为3D高分辨率地震数据成像的有效工具。尽管通过固定相迁移获得的最佳孔径降低了3D QPSTM的计算成本并产生了3D固定相QPSTM,但相关的计算效率仍然是处理3D,高分辨率图像以进行真正的大规模地震的主要问题数据。在当前的论文中,我们提出了一种针对大型3D地震数据的划分方法,以优化图形处理单元(GPU)集群上固定相QPSTM的性能。然后,我们设计了一个成像点并行策略,以实现最佳的并行计算性能。之后,我们对多流采用异步双缓冲方案,以执行GPU / CPU并行计算。此外,还采用了几种基于计算统一设备架构(CUDA)的计算和存储关键优化策略来加速3D固定相QPSTM算法。与最初的GPU代码相比,关键优化步骤(包括线程优化,共享内存优化,寄存器优化和特殊功能单元(SFU))的实施大大提高了效率。一个使用实际的大规模3D地震数据的数值示例表明,我们的方案比CPU-QPSTM算法快近80倍。我们的GPU / CPU异构并行计算框架显着降低了计算成本,并促进了对大规模地震数据的3D高分辨率成像。

著录项

  • 来源
    《Computers & geosciences》 |2018年第2期|272-282|共11页
  • 作者单位

    Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China;

    Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China;

    Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China;

    Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China;

    Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号