...
首页> 外文期刊>Computers & Chemical Engineering >Toward simulation of full-scale monolithic catalytic converters with complex heterogeneous chemistry
【24h】

Toward simulation of full-scale monolithic catalytic converters with complex heterogeneous chemistry

机译:面向具有复杂多相化学反应的全尺寸整体式催化转化器的仿真

获取原文
获取原文并翻译 | 示例
           

摘要

Computational fluid dynamic (CFD) modeling of full-scale catalytic converters with realistic chemistry has remained elusive primarily due to the extreme computational requirements. In this work, a new low-memory coupled implicit solver, based on the conservative unstructured finite-volume method, was utilized to simulate laboratory-scale catalytic converters with implicit coupling between fluid flow, heat transfer (including conjugate heat transfer), mass transfer, and heterogeneous chemical reactions. Steady-state calculations were performed for a catalytic methane-air combustion process with 24 reaction steps and 19 species (8 gas-phase species, 11 surface-adsorbed species), and for a three-way catalytic conversion process with 61 reaction steps and 31 species (8 gas-phase species, 23 surface-adsorbed species). Both calculations were conducted on a single processor for a monolith with 57 channels discretized using 354,300 control volumes.The catalytic combustion simulation was completed in 19 h and required 900 MB of memory, while the three-way conversion simulation required 6 days and 1 GB of memory, indicating that the complexity of the surface reaction mechanism dominates the overall CPU time requirements. Subsequently, the solver was parallelized, and the same catalytic combustion case was simulated for a monolith with 293 channels discretized using 1.27 million control volumes. A 4-node cluster was utilized for the parallel computations, and the parallelization efficiency was found to be about 80%.
机译:主要由于极端的计算要求,具有逼真的化学作用的全尺寸催化转化器的计算流体动力学(CFD)建模仍然难以捉摸。在这项工作中,基于保守的非结构化有限体积方法,一种新的低内存耦合隐式求解器被用来模拟实验室规模的催化转化器,在流体流动,传热(包括共轭传热),传质之间进行隐式耦合。和异质化学反应。对具有24个反应步骤和19种(8种气相物种,11种表面吸附物质)的催化甲烷-空气燃烧过程进行了稳态计算,并对具有61个反应步骤和31种反应的三元催化转化过程进行了稳态计算。物种(8种气相物种,23种表面吸附物种)。两种计算均在单个处理器上针对具有354,300个控制体积离散的57个通道的整体进行。催化燃烧模拟在19小时内完成并需要900 MB的内存,而三效转换模拟则需要6天和1 GB的内存内存,表明表面反应机制的复杂性主导了总体CPU时间要求。随后,求解器被并行化,并模拟了使用127万个控制体积离散化293个通道的整体催化燃烧的情况。利用4节点群集进行并行计算,发现并行化效率约为80%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号