...
首页> 外文期刊>Computer networks >Space-based multi-hop networking
【24h】

Space-based multi-hop networking

机译:天基多跳网络

获取原文
获取原文并翻译 | 示例

摘要

Many emerging applications will incorporate multiple spacecraft that form communications networks necessary to achieve coverage, latency and throughput requirements. Such networks may arise in the context of a space science mission consisting of distributed spacecraft performing multi-point sensing, or a global surveillance system serving military needs. Constellations of sensor spacecraft significantly benefit from incorporation of cross-link communications capabilities, thereby forming networks, by enabling continuous access to any/all spacecraft via a single ground contact, realtime coordinated observations, and autonomous in situ processing within a spatial neighborhood of spacecraft. Space-based networks may also be employed as relay infrastructure supporting (Earth, Moon, other planet) surface users engaged in various applications, such as space exploration. In this paper, we present an "L2 mesh" protocol for space-based sensor networks. Because of the large inter-spacecraft distances, directional antennas are used, with a single transceiver per spacecraft to achieve low cost. Orbital motion induces a dynamic albeit predictable geometry (and topology) among the spacecraft. One or more ground (base) stations are used; multiple ground stations are often required to ensure continuous network connectivity. Offered traffic patterns are general anycast to ground stations, and reverse-direction dissemination (for spacecraft commanding or "forward" relay). We present a technique that derives the link activation schedule (transmit/receive mode and communications neighbor selection) and route paths used for multi-hop relay through the network, leveraging the Florens and McEliece algorithm for tree networks. Highly efficient communications are achieved; in particular, the inherent tree structure enables accommodation of propagation delays that otherwise degrade the large delay-bandwidth links comprising space networks. An illustrative example is presented. Simulations demonstrate that the algorithm provides high throughput and low latency performance over general network configurations. An extension to the networking method is described that is traffic adaptive.
机译:许多新兴应用将结合多个航天器,这些航天器构成实现覆盖,延迟和吞吐量要求所必需的通信网络。这样的网络可能出现在由执行多点传感的分布式航天器或满足军事需求的全球监视系统组成的空间科学任务的背景下。传感器航天器的星座图通过合并交叉链接通信功能而受益匪浅,从而可以通过单个地面接触,实时协调观测以及航天器空间邻域内的自主原位处理来连续访问任何/所有航天器,从而形成网络。天基网络还可以用作支持各种应用(例如太空探索)的地面基础用户的中继基础结构支持(地球,月球,其他行星)。在本文中,我们为基于空间的传感器网络提出了一种“ L2网格”协议。由于航天器之间的距离较大,因此使用定向天线,每个航天器只有一个收发器,以实现低成本。轨道运动会在航天器之间诱发动态的,可预测的几何形状(和拓扑结构)。使用了一个或多个地面(基站)站;通常需要多个地面站以确保持续的网络连接。所提供的业务量模式是对地面站的一般任意播,以及反向传播(用于航天器命令或“前向”中继)。我们提出了一种技术,利用树的弗洛伦斯和McEliece算法,推导了链路激活时间表(发送/接收模式和通信邻居选择)和用于网络中多跳中继的路由路径。实现了高效的通信;特别地,固有树结构能够容纳传播延迟,否则传播延迟会降低包括空间网络的大型延迟带宽链路。给出了说明性示例。仿真表明,该算法在常规网络配置上提供了高吞吐量和低延迟性能。描述了对网络方法的扩展,该扩展是流量自适应的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号