Synthesis using physical modeling has a long history. As computational costs for physical modeling synthe'/> Physical Modeling, Algorithms, and Sound Synthesis: The NESS Project
首页> 外文期刊>Computer Music Journal >Physical Modeling, Algorithms, and Sound Synthesis: The NESS Project
【24h】

Physical Modeling, Algorithms, and Sound Synthesis: The NESS Project

机译:物理建模,算法和声音合成:NESS项目

获取原文
获取原文并翻译 | 示例
       

摘要

ara xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Synthesis using physical modeling has a long history. As computational costs for physical modeling synthesis are often much greater than for conventional synthesis methods, most techniques currently rely on simplifying assumptions. These include digital waveguides, as well as modal synthesis methods. Although such methods are efficient, it can be difficult to approach some of the more detailed behavior of musical instruments in this way, including strongly nonlinear interactions. Mainstream time-stepping simulation methods, despite being computationally costly, allow for such detailed modeling. In this article, the results of a five-year research project, Next Generation Sound Synthesis, are presented, with regard to algorithm design for a variety of sound-producing systems, including brass and bowed-string instruments, guitars, and large-scale environments for physical modeling synthesis. In addition, 3-D wave-based modeling of large acoustic spaces is discussed, as well as the embedding of percussion instruments within such spaces for full spatialization. This article concludes with a discussion of some of the basics of such time-stepping methods, as well as their application in audio synthesis.
机译:ara xmlns:mml =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”>使用物理建模合成有很长的历史。由于物理建模合成的计算成本通常大于传统的合成方法,目前大多数技术依赖于简化假设。这些包括数字波导,以及模态合成方法。虽然这种方法是有效的,但是难以以这种方式接近乐器的一些更详细的行为,包括强烈的非线性相互作用。主流时间步进仿真方法,尽管计算得昂贵,但允许如此详细的建模。在本文中,在五年的研究项目,下一代声音合成的结果,关于各种发声系统的算法设计,包括黄铜和鞠躬弦乐器,吉他和大规模的算法设计物理建模合成的环境。此外,大的声学空间的基于波3-d建模所讨论的,以及打击乐器的这样的空间用于全空间化中的嵌入。本文讨论了这些时间步进方法的一些基础知识,以及它们在音频合成中的应用。

著录项

  • 来源
    《Computer Music Journal》 |2020年第3期|15-30|共16页
  • 作者单位

    Acoustics and Audio Group University of Edinburgh Room 2.10 Alison House 12 Nicolson Square Edinburgh EH8 9DF UK;

    School of Mathematics University of Edinburgh Room 5313 James Clerk Maxwell Building Mayfield Road Edinburgh EH9 3JZ UK;

    Acoustics and Audio Group University of Edinburgh Room 2.10 Alison House 12 Nicolson Square Edinburgh EH8 9DF UK;

    Acoustics and Audio Group University of Edinburgh Room 2.10 Alison House 12 Nicolson Square Edinburgh EH8 9DF UK;

    i4 Product Design Suite 3 Broomhills Business Centre 49 Frogston Road East Edinburgh EH17 8RT UK;

    Acoustics and Audio Group University of Edinburgh Room 2.10 Alison House 12 Nicolson Square Edinburgh EH8 9DF UK;

    Physical Audio 15 Heath Park Road Romford RM2 5UB UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 21:03:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号