首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction
【24h】

Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction

机译:腹主动脉瘤的壁应力和血流动力学:有限元分析与流固耦合

获取原文
获取原文并翻译 | 示例
           

摘要

Abdominal aortic aneurysm (AAA) rupture is the clinical manifestation of an induced force exceeding the resistance provided by the strength of the arterial wall. This force is most frequently assumed to be the product of a uniform luminal pressure acting along the diseased wall. However fluid dynamics is a known contributor to the pathogenesis of AAAs, and the dynamic interaction of blood flow and the arterial wall represents the in vivo environment at the macro-scale. The primary objective of this investigation is to assess the significance of assuming an arbitrary estimated peak fluid pressure inside the aneurysm sac for the evaluation of AAA wall mechanics, as compared with the non-uniform pressure resulting from a coupled fluid-structure interaction (FSI) analysis. In addition, a finite element approach is utilised to estimate the effects of asymmetry and wall thickness on the wall stress and fluid dynamics of ten idealised AAA models and one non-aneurysmal control. Five degrees of asymmetry with uniform and variable wall thickness are used. Each was modelled under a static pressure-deformation analysis, as well as a transient FSI. The results show that the inclusion of fluid flow yields a maximum AAA wall stress up to 20% higher compared to that obtained with a static wall stress analysis with an assumed peak luminal pressure of 117 mmHg. The variable wall models have a maximum wall stress nearly four times that of a uniform wall thickness, and also increasing with asymmetry in both instances. The inclusion of an axial stretch and external pressure to the computational domain decreases the wall stress by 17%.
机译:腹主动脉瘤(AAA)破裂的临床表现是诱导力超过动脉壁强度所提供的抵抗力。最常假定此力是沿患病壁作用的均匀腔压力的乘积。然而,流体动力学是AAA的发病机理的已知贡献者,并且血流和动脉壁的动态相互作用代表了宏观的体内环境。这项研究的主要目的是评估假定动脉瘤囊内部任意估计的峰值流体压力与AAA壁力学评估相比,由流体-结构相互作用(FSI)产生的非均匀压力的重要性。分析。此外,利用有限元方法来估计不对称性和壁厚对十个理想化AAA模型和一个非动脉瘤控制模型的壁应力和流体动力学的影响。使用具有均匀且可变的壁厚的五个不对称度。每个模型都在静态压力变形分析和瞬态FSI下建模。结果表明,与假定壁压峰值为117 mmHg的静态壁应力分析相比,包含流体流产生的最大AAA壁应力高出20%。可变壁模型的最大壁应力几乎是均匀壁厚的四倍,并且在两种情况下都随着不对称性的增加而增加。在计算域中包括轴向拉伸和外部压力可将壁应力降低17%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号