首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Numerical differentiation for local and global tangent operators in computational plasticity
【24h】

Numerical differentiation for local and global tangent operators in computational plasticity

机译:计算可塑性中局部和全局切线算子的数值微分

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, numerical differentiation is applied to integrate plastic constitutive laws and to compute the corresponding consistent tangent operators. The derivatives of the constitutive equations are approximated by means of difference schemes. These derivatives are needed to achieve quadratic convergence in the integration at Gauss-point level and in the solution of the boundary value problem. Numerical differentiation is shown to be a simple, robust and competitive alternative to analytical derivatives. Quadratic convergence is maintained, provided that adequate schemes and stepsizes are chosen. This point is illustrated by means of some numerical examples.
机译:在本文中,数值微分被用于整合塑性本构定律并计算相应的一致切线算子。本构方程的导数通过差分方案来近似。这些导数是在高斯点积分和解决边值问题时实现二次收敛所必需的。结果表明,数值微分是分析导数的一种简单,强大且具有竞争力的替代方法。只要选择适当的方案和逐步大小,就可以保持二次收敛。通过一些数字示例说明了这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号