...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A versatile implicit iterative approach for fully resolved simulation of self-propulsion
【24h】

A versatile implicit iterative approach for fully resolved simulation of self-propulsion

机译:一种通用的隐式迭代方法,可以完全解决自推进仿真问题

获取原文
获取原文并翻译 | 示例

摘要

We present a computational approach for fully resolved simulation of self-propulsion of organisms through a fluid. A new implicit iterative algorithm is developed that solves for the swimming velocities of the organism with prescribed deformation kinematics. A solution for the surrounding flow field is also obtained. This approach uses a constraint-based formulation of the problem of self-propulsion developed by Shirgaonkar et al. [1]. The approach in this paper is unlike the previous work [1] where a fractional time stepping scheme was used. Fractional time stepping schemes, while efficient for moderate to high Reynolds number problems, are not suitable for zero or low Reynolds number problems where the inertia term in the governing equation is absent or negligible. In such cases the implicit iterative algorithm presented here is more appropriate. We validate the method by simulating self-propulsion of bacterial flagellum, jellyfish (Aurelia aurita), and larval zebrafish (Danio rerio). Comparison of the computational results with theoretical and experimental results for the test cases is found to be very good.
机译:我们提出了一种计算方法,用于通过流体对生物的自我推进进行完全解析的模拟。开发了一种新的隐式迭代算法,该算法以规定的变形运动学解决了有机体的游泳速度。还可以获得周围流场的解决方案。这种方法使用了Shirgaonkar等人开发的基于约束的自我推进问题。 [1]。本文中的方法与以前的工作[1]不同,在先前的工作中,使用了分数时间步进方案。分数时间步长方案虽然对于中到高雷诺数问题有效,但不适用于零或低雷诺数问题,在零或低雷诺数问题中控制方程中的惯性项不存在或可忽略不计。在这种情况下,此处介绍的隐式迭代算法更为合适。我们通过模拟细菌鞭毛,水母(Aurelia aurita)和幼虫斑马鱼(Danio rerio)的自推进力来验证该方法。测试案例的计算结果与理论和实验结果的比较非常好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号