...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Asynchronous multi-domain variational integrators for nonlinear hyperelastic solids
【24h】

Asynchronous multi-domain variational integrators for nonlinear hyperelastic solids

机译:非线性超弹性固体的异步多域变分积分器

获取原文
获取原文并翻译 | 示例

摘要

We present the asynchronous multi-domain variational time integrators with a dual domain decomposition method for the initial hyperbolic boundary-value problem in hyperelasticity. Variational time integration schemes, based on the principle of minimal action within the Lagrangian framework, are constructed for the equation of motion and implemented into a variational finite element framework, which is systematically derived from the three-field de Veubeke-Hu-Washizu variational principle to accommodate the incompressibility constraint present in an analysis of nearly-incompressible materials. For efficient parallel computing, we use the dual domain decomposition method with local Lagrange multipliers to ensure the continuity of the displacement field at the interface between subdomains. The α-method for time discretization and the multi-domain spatial decomposition enable us to use different types of integrators (explicit vs. implicit) and different time steps on different parts of a computational domain, and thus efficiently capture the underlying physics with less computational effort. The energy conservation of our nonlinear, midpoint, asynchronous integration scheme is investigated using the Energy method, and both local and the global energy error estimates are derived. We illustrate the performance of proposed variational multi-domain time integrators by means of three examples. First, the method of manufactured solutions is used to examine the consistency of the formulation. In the second example, we investigate energy conservation and stability. Finally, we apply the method to the motion of a heterogeneous plane domain, where different integrators and time discretization steps are used accordingly with disparate material data of individual parts.
机译:对于超弹性中的初始双曲边值问题,我们提出了一种具有双域分解方法的异步多域变分时间积分器。基于拉格朗日框架内最小作用原理的变分时间积分方案被构造成运动方程,并被实现为一个变分有限元框架,该框架是从三场de Veubeke-Hu-Washizu变分原理系统地得出的以适应在几乎不可压缩材料的分析中存在的不可压缩性约束。为了进行有效的并行计算,我们使用带有局部拉格朗日乘数的双域分解方法来确保子域之间的界面处位移场的连续性。用于时间离散化的α方法和多域空间分解使我们能够在计算域的不同部分上使用不同类型的积分器(显式vs.隐式)和不同的时间步长,从而以较少的计算量有效地捕获基础物理努力。使用能量方法研究了我们的非线性,中点,异步积分方案的能量守恒,并导出了局部和全局能量误差估计。我们通过三个例子说明了提出的变分多域时间积分器的性能。首先,使用制成溶液的方法来检查配方的一致性。在第二个示例中,我们研究了节能和稳定性。最后,我们将该方法应用于异质平面域的运动,在该运动中相应地使用了不同的积分器和时间离散化步骤,以及各个零件的不同材料数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号