首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Phase field modeling of fracture in porous plasticity: A variational gradient-extended Eulerian framework for the macroscopic analysis of ductile failure
【24h】

Phase field modeling of fracture in porous plasticity: A variational gradient-extended Eulerian framework for the macroscopic analysis of ductile failure

机译:多孔塑性中断裂的相场建模:延性梯度扩展的欧拉框架,用于宏观分析延性破坏

获取原文
获取原文并翻译 | 示例
           

摘要

This work outlines a rigorous variational-based framework for the phase field modeling of fracture in isotropic porous solids undergoing large elastic plastic strains. It extends the recent works of Miehe et al., [33,53] to a particular formulation of isotropic porous plasticity. The phase field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modeling with geometric features rooted in fracture mechanics. A gradient plasticity model for porous plasticity with a simple growth law for the evolution of the void fraction is developed, and linked to a failure criterion in terms of the local elastic plastic work density that drives the fracture phase field. It is shown that this approach is able to model basic phenomena of ductile failure such as cup cone failure surfaces in terms of only two material parameters on the side of damage mechanics: a critical work density that triggers the onset of damage and a shape parameter that governs the postcritical damage up to fracture. The formulation includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This allows to design damage zones of ductile fracture to be inside of plastic zones or vice versa, and guarantees on the computational side a mesh objectivity in post-critical ranges. The key aspect that allows to construct a variational theory for porous plasticity at fracture is the use of an Eulerian constitutive setting, where the yield function is formulated in terms of the Kirchhoff stress. Here, we exploit the fact that this stress approximates an effective stress that drives the plasticity in the matrix of the porous solid. The coupling of gradient plasticity to gradient damage is realized by a constitutive work density function that includes the stored elastic energy and the dissipated work due to plasticity and fracture. The latter represents a coupled resistance to plasticity and damage, depending on the gradient-extended internal variables which enter the plastic yield function and the fracture threshold function. The canonical theory proposed is shown to be governed by a rate-type minimization principle, which fully determines the coupled multi-field evolution problem, and provides inherent symmetries with regard to a finite element implementation. The robust computational setting proposed includes (i) a general return scheme of plasticity in the spectral space of logarithmic principal strains and dual Kirchhoff stresses, (ii) the micromorphic regularization of the gradient plastic evolution and (iii) a history-field-driven update of the linear phase field equation. (C) 2016 Elsevier B.V. All rights reserved.
机译:这项工作概述了一个严格的基于变分的框架,用于经历大弹性塑性应变的各向同性多孔固体中断裂的相场建模。它把Miehe等人[33,53]的最新工作扩展到各向同性多孔塑性的特定公式。相场方法通过特定的梯度损伤建模,在纯连续体设置中对尖锐的裂纹表面进行规则化,该模型具有扎根于断裂力学的几何特征。建立了多孔塑性的梯度塑性模型,该模型具有一个简单的增长空隙率增长规律的模型,并根据驱动断裂相场的局部弹性塑性功密度与破坏准则相联系。结果表明,该方法能够仅根据损坏力学方面的两个材料参数来建模延性破坏的基本现象,例如杯锥破坏表面,这是触发损坏开始的临界工作密度和形状参数,其控制后临界损伤直至断裂。该配方包括两个独立的长度标尺,这些标尺既规范了塑性响应,又规范了裂纹的不连续性。这允许将延性断裂的损坏区域设计为在塑性区域内部,反之亦然,并在计算侧保证后临界范围内的网格客观性。允许构造断裂多孔塑性变化理论的关键方面是使用欧拉本构关系,其中屈服函数根据基尔霍夫应力来表示。在这里,我们利用了以下事实:该应力接近有效应力,该应力驱动多孔固体基质中的可塑性。梯度可塑性与梯度损伤的耦合是通过本构功密度函数实现的,该函数包括所存储的弹性能以及由于可塑性和断裂而产生的耗散功。后者代表了对塑性和破坏的耦合抵抗力,具体取决于进入塑性屈服函数和断裂阈值函数的梯度扩展内部变量。所提出的规范理论受速率类型最小化原则的支配,它完全确定了耦合的多场演化问题,并就有限元实现提供了固有的对称性。提出的鲁棒计算设置包括(i)对数主应变和双重基尔霍夫应力的频谱空间中塑性的一般返回方案,(ii)梯度塑性演化的微形态正则化,以及(iii)历史场驱动的更新线性相位场方程(C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号