首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Bayesian system identification based on hierarchical sparse Bayesian learning and Gibbs sampling with application to structural damage assessment
【24h】

Bayesian system identification based on hierarchical sparse Bayesian learning and Gibbs sampling with application to structural damage assessment

机译:基于分层稀疏贝叶斯学习和吉布斯采样的贝叶斯系统识别及其在结构损伤评估中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Bayesian system identification has attracted substantial interest in recent years for inferring structural models based on measured dynamic response from a structural dynamical system. The focus in this paper is Bayesian system identification based on noisy incomplete modal data where we can impose spatially-sparse stiffness changes when updating a structural model. To this end, based on a similar hierarchical sparse Bayesian learning model from our previous work, we propose two Gibbs sampling algorithms. The algorithms differ in their strategies to deal with the posterior uncertainty of the equation-error precision parameter, but both sample from the conditional posterior probability density functions (PDFs) for the structural stiffness parameters and system modal parameters. The effective dimension for the Gibbs sampling is low because iterative sampling is done from only three conditional posterior PDFs that correspond to three parameter groups, along with sampling of the equation-error precision parameter from another conditional posterior PDF in one of the algorithms where it is not integrated out as a "nuisance" parameter. A nice feature from a computational perspective is that it is not necessary to solve a nonlinear eigenvalue problem of a structural model. The effectiveness and robustness of the proposed algorithms are illustrated by applying them to the IASE-ASCE Phase II simulated and experimental benchmark studies. The goal is to use incomplete modal data identified before and after possible damage to detect and assess spatially-sparse stiffness reductions induced by any damage. Our past and current focus on meeting challenges arising from Bayesian inference of structural stiffness serves to strengthen the capability of vibration-based structural system identification but our methods also have much broader applicability for inverse problems in science and technology where system matrices are to be inferred from noisy partial information about their eigenquantities. (C) 2017 Elsevier B.V. All rights reserved.
机译:近年来,贝叶斯系统识别已经引起了人们的广泛兴趣,它们基于结构动力系统的动态响应来推断结构模型。本文的重点是基于嘈杂的不完整模态数据的贝叶斯系统识别,在更新结构模型时,我们可以施加空间稀疏的刚度变化。为此,基于之前工作中类似的分层稀疏贝叶斯学习模型,我们提出了两种吉布斯采样算法。这些算法在处理等式误差精度参数的后验不确定性的策略上有所不同,但是都从条件后验概率密度函数(PDF)中获取结构刚度参数和系统模态参数的样本。 Gibbs采样的有效维数很低,因为仅从与三个参数组相对应的三个条件后验PDF进行迭代采样,并且在其中一种算法中从另一个条件后验PDF采样方程误差精度参数。没有集成为“讨厌”参数。从计算的角度来看,一个不错的功能是不必解决结构模型的非线性特征值问题。通过将其应用于IASE-ASCE II期模拟和实验基准研究,说明了所提出算法的有效性和鲁棒性。目标是使用可能损坏之前和之后识别出的不完整模态数据,以检测和评估由损坏引起的空间稀疏刚度降低。我们过去和现在的重点是应对结构刚度的贝叶斯推断所带来的挑战,这有助于增强基于振动的结构系统识别的能力,但我们的方法还具有广泛的适用性,可用于从技术中推断出系统矩阵的科学技术中的反问题。关于其特征量的嘈杂的部分信息。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号