...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Nitsche's method for linear Kirchhoff-Love shells: Formulation, error analysis, and verification
【24h】

Nitsche's method for linear Kirchhoff-Love shells: Formulation, error analysis, and verification

机译:NITSCHE用于线性Kirchhoff-Love壳牌的方法:配方,误差分析和验证

获取原文
           

摘要

Stable and accurate modeling of thin shells requires proper enforcement of all types of boundary conditions. Unfortunately, for Kirchhoff-Love shells, strong enforcement of Dirichlet boundary conditions is difficult because both displacement and normal rotation boundary conditions must be applied. A popular alternative is to employ Nitsche's method to weakly enforce all boundary conditions. However, while many Nitsche-based formulations have been proposed in the literature, they lack comprehensive error analyses and verification. In fact, existing formulations are variationally inconsistent and yield sub-optimal convergence rates when used with common boundary condition specifications. In this paper, we present a novel Nitsche-based formulation for the linear Kirchhoff-Love shell that is provably stable and optimally convergent for general sets of admissible boundary conditions. To arrive at our formulation, we first present a framework for constructing Nitsche's method for any abstract variationally constrained minimization problem. We then apply this framework to the linear Kirchhoff-Love shell and, for the particular case of NURBS-based isogeometric analysis, we prove that the resulting formulation yields optimal convergence rates in both the shell energy norm and the standard L-2-norm. To arrive at this formulation, we derive the Euler-Lagrange equations for general sets of admissible boundary conditions and show that the Euler-Lagrange boundary conditions typically presented in the literature are incorrect. We verify our formulation by manufacturing solutions for a new shell obstacle course that encompasses flat, parabolic, hyperbolic, and elliptic geometric configurations with a variety of common boundary condition specifications. These manufactured solutions allow us to robustly measure the error across the entire shell in contrast with current best practices where displacement and stress errors are only measured at specific locations. We use NURBS discretizations to represent the shell geometry and show optimal convergence rates in both the shell energy norm and the standard L-2-norm with varying polynomial degrees for all of the problems in the obstacle course. (C) 2020 Elsevier B.V. All rights reserved.
机译:薄壳的稳定和准确建模需要适当的所有类型的边界条件的执行。不幸的是,对于Kirchhoff-Love壳牌来说,难以实施Dirichlet边界条件的强大强制,因为必须应用位移和正常旋转边界条件。一种流行的替代方案是雇用Nitsche的方法来削弱所有边界条件。然而,虽然在文献中提出了许多基于Nitsche的配方,但它们缺乏综合误差分析和验证。实际上,当与共同的边界条件规范一起使用时,现有制剂是分分的和产生的次优化收敛速率。在本文中,我们提出了一种基于NITSCHE的基于NITSCHE-LOVE-LOVE壳,其可用于允许允许的允许边界条件的一般稳定和最佳地区。要到达我们的配方,我们首先提出了一个框架,用于构建NITSCHE的方法,用于任何摘要变异约束最小化问题。然后,我们将该框架应用于线性Kirchhoff-Love壳,并且对于基于NURBS的异诊断分析的特定情况,我们证明所得的制剂在壳能量规范和标准L-2-NOM中产生最佳的收敛速率。要到达这种配方,我们派生了欧拉拉格朗法朗格方程,以获得概述的允许边界条件,并表明通常在文献中呈现的欧拉拉格朗边界条件不正确。我们通过制造我们的制造解决方案,用于新的壳牌障碍课程,包括具有各种公共边界条件规格的平坦,抛物线,双曲线和椭圆形几何配置。这些制造的解决方案允许我们强大地测量整个壳体上的误差,相反,当时仅在特定位置测量位移和应力误差的最佳实践。我们使用NURBS离散化来表示壳体几何形状,并显示壳体能量规范和标准L-2-NOM中的最佳收敛速率,对于障碍课程中的所有问题,具有不同的多项式度。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号