...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An elasto-plastic self-consistent model for damaged polycrystalline materials: Theoretical formulation and numerical implementation
【24h】

An elasto-plastic self-consistent model for damaged polycrystalline materials: Theoretical formulation and numerical implementation

机译:受损多晶材料的弹塑性自给式模型:理论配方和数值实施

获取原文
获取原文并翻译 | 示例

摘要

Elasto-plastic multiscale approaches are known to be suitable to model the mechanical behavior of metallic materials during forming processes. These approaches are classically adopted to explicitly link relevant microstructural effects to the macroscopic behavior. This paper presents a finite strain elasto-plastic self-consistent model for damaged polycrystalline aggregates and its implementation into ABAQUS/Standard finite element (FE) code. Material degradation is modeled by the introduction of a scalar damage variable at each crystallographic slip system for each individual grain. The single crystal plastic flow is described by both the classical and a regularized version of the Schmid criterion. To integrate the single crystal constitutive equations, two new numerical algorithms are developed (one for each plastic flow rule). Then, the proposed single crystal modeling is embedded into the self-consistent scheme to predict the mechanical behavior of elasto-plastic polycrystalline aggregates in the finite strain range. This strategy is implemented into ABAQUS/Standard FE code through a user-defined material (UMAT) subroutine. Special attention is paid to the satisfaction of the incremental objectivity and the efficiency of the convergence of the global resolution scheme, related to the computation of the consistent tangent modulus. The capability of the new constitutive modeling to capture the interaction between the damage evolution and the microstructural properties is highlighted through several simulations at both single crystal and polycrystalline scales. It appears from the numerical tests that the use of the classical Schmid criterion leads to a poor numerical convergence of the self-consistent scheme (due to the abrupt changes in the activity of the slip systems), which sometimes causes the computations to be prematurely stopped. By contrast, the use of the regularized version of the Schmid law allows a better convergence of the self-consistent approach, but induces an important increase in the computation time devoted to the integration of the single crystal constitutive equations (because of the high value of the power-law exponent used to regularize the Schmid yield function). To avoid these difficulties, a numerical strategy is built to combine the benefits of the two approaches: the classical Schmid criterion is used to integrate the single crystal constitutive equations, while its regularized version is used to compute the microscopic tangent modulus required for solving the self-consistent equations. The robustness and the accuracy of this novel numerical strategy are particularly analyzed through several numerical simulations (prediction of the mechanical behavior of polycrystalline aggregates and simulation of a circular cup-drawing forming process). (C) 2020 Elsevier B.V. All rights reserved.
机译:已知弹塑性多尺度方法适用于在成型过程中模拟金属材料的力学行为。典型地采用这些方法将相关的微观结构效应显式链接到宏观行为。本文介绍了有限菌株的弹性塑料自我一致的模型,用于损坏多晶聚集体及其进入ABAQUS /标准有限元(FE)代码。通过引入每个晶粒的每个晶体滑动系统的标量损伤变量来建模材料劣化。单晶塑料流由施密标准的经典和正则化版本描述。为了集成单晶组成方程,开发了两个新的数值算法(每个塑料流量一个)。然后,将所提出的单晶建模嵌入到自我一致的方案中以预测在有限应变范围内的弹性塑料多晶聚集体的力学行为。该策略通过用户定义的材料(UMAT)子程序来实现到ABAQUS /标准FE代码中。特别注意,令人满意的增量客观性和全球解析方案的收敛效率,与计算一致的切线模量有关。通过单晶和多晶尺度的几种模拟突出了新的本结构型建模以捕获损伤进化与微观结构性质之间的相互作用的能力。从数值测试中出现的是,经典施密标准的使用导致自我一致的方案的数值收敛不佳(由于滑动系统的活动的突然变化),这有时会导致计算过早停止。相比之下,使用正则化版本的施密金允许更好地融合自我一致的方法,但是诱导致专用于单晶组成方程的集成的计算时间的重要增加(因为高价值幂律指数用于规范施密产量函数)。为避免这些困难,建立了一种数值策略来结合两种方法的益处:经典施密标准用于集成单晶本构方程,而其正则化版本用于计算解决自身所需的微观切线模量 - 履行方程。通过若干数值模拟特别分析了这种新颖的数控策略的鲁棒性和准确性(预测多晶聚集体的机械行为和圆形杯绘制成形过程的模拟)。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号