...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Imposing minimum and maximum member size, minimum cavity size, and minimum separation distance between solid members in topology optimization
【24h】

Imposing minimum and maximum member size, minimum cavity size, and minimum separation distance between solid members in topology optimization

机译:在拓扑优化中施加最小和最大成员尺寸,最小腔体尺寸和固体成员之间的最小分离距离

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper focuses on density-based topology optimization and proposes a combined method to simultaneously impose Minimum length scale in the Solid phase (MinSolid), Minimum length scale in the Void phase (MinVoid) and Maximum length scale in the Solid phase (MaxSolid). MinSolid and MinVoid mean that the size of solid parts and cavities must be greater than the size of a prescribed circle or sphere. This is ensured through the robust design approach based on eroded, intermediate and dilated designs. MaxSolid seeks to restrict the formation of solid parts larger than a prescribed size, which is imposed through local volume restrictions. In the first part of this article, we show that by proportionally restricting the maximum size of the eroded, intermediate and dilated designs, it is possible to obtain optimized designs satisfying, simultaneously, MinSolid, MinVoid and MaxSolid. However, in spite of obtaining designs with crisp boundaries, some results can be difficult to manufacture due to the presence of multiple rounded cavities, which are introduced by the maximum size restriction with the sole purpose of avoiding thick solid members in the structure. To address this issue, in the second part of this article we propose a new geometric constraint that seeks to control the minimum separation distance between two solid members, also called the Minimum Gap (MinGap). Differently from MinVoid, MinGap introduces large void areas that do not necessarily have to be round. 2D and 3D test cases show that simultaneous control of MinSolid, MinVoid, MaxSolid and MinGap can be useful to improve the manufacturability of maximum size constrained designs. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文重点介绍基于密度的拓扑优化,并提出了一种同时施加在固相(明酞啉)中的最小长度尺度的组合方法,在空隙相(小型)中的最小长度尺度和固相(MaxSolid)中的最大长度尺度。明醇和小型意味着固体零件和空腔的尺寸必须大于规定圆形或球体的尺寸。通过基于侵蚀,中间和扩张设计的鲁棒设计方法来确保这一点。 MaxSolid寻求限制大于规定尺寸的固体部件的形成,这通过局部体积限制施加。在本文的第一部分中,我们表明,通过按比例限制侵蚀,中间和扩张设计的最大尺寸,可以获得满足,同时,明显,小醇类和MAXSOLID的优化设计。然而,尽管获得了具有脆边界的设计,因此由于存在多个圆形腔的存在而难以制造的一些结果,其由最大尺寸限制引入,其唯一目的是避免结构中厚固有构件。要解决此问题,在本文的第二部分中,我们提出了一种新的几何约束,寻求控制两个固体成员之间的最小分离距离,也称为最小间隙(MINGAP)。与小型不同,MINGAP引入大型空隙区域,这些区域不一定必须圆。 2D和3D测试案例表明,同时控制明多糖,小型,Maxsolid和Mingap可以有助于提高最大尺寸约束设计的可制造性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号