首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Acceleration of the spectral stochastic FEM using POD and element based discrete empirical approximation for a micromechanical model of heterogeneous materials with random geometry
【24h】

Acceleration of the spectral stochastic FEM using POD and element based discrete empirical approximation for a micromechanical model of heterogeneous materials with random geometry

机译:使用POD和基于元素的离散经验逼近为随机几何形状的异质材料的微机械模型加速频谱随机有限元

获取原文
获取原文并翻译 | 示例
           

摘要

The spectral stochastic FEM with local basis functions in the stochastic domain (SL-FEM) is one of the most flexible and accurate stochastic methods, however, also the most computationally expensive. These expenses are traditionally associated with the extra large tangent stiffness matrix and a huge number of elements which need to be re-integrated in every iteration. In this work we incorporate the proper orthogonal decomposition (POD) into the SL-FEM, thus performing a drastic reduction of the stiffness matrix. In order to reduce the integration costs by hyperreduction, a novel element-based modification of the discrete empirical interpolation, the so-called element-based empirical approximation method (EDEAM), is developed and combined with the POD. Particular advantages of the SL-FEM for order reduction and hyperreduction compared to other stochastic techniques are discussed. The new reduced-order SL-FEM is applied to the computational homogenization of materials with random geometry of the microstructure, i.e. to a general class of problems exhibiting strongly nonlinear, non-smooth and sometimes discontinuous dependency of the solution on some random parameters. The reduced-order SL-FEM demonstrates a high accuracy and a high solution speed, whereby the solution time for the reduced-order SL-FEM is comparable to the solution time of only one single Monte-Carlo sample. (C) 2019 Elsevier B.V. All rights reserved.
机译:具有随机域中的局部基函数的频谱随机有限元法(SL-FEM)是最灵活,最准确的随机方法之一,但也是计算上最昂贵的方法。传统上,这些费用与超大的切线刚度矩阵和大量元素相关,这些元素需要在每次迭代中重新集成。在这项工作中,我们将适当的正交分解(POD)合并到SL-FEM中,从而大大降低了刚度矩阵。为了通过超还原来降低集成成本,开发了一种新的基于离散离散经验插值的基于元素的修改方法,即所谓的基于元素的经验近似方法(EDEAM),并将其与POD结合使用。讨论了与其他随机技术相比,SL-FEM在降阶和超降阶方面的特殊优势。新的降阶SL-FEM用于具有微观结构随机几何形状的材料的计算均质化,即应用于解决方案对某些随机参数表现出强烈的非线性,不平滑以及有时不连续依赖的一般问题。降阶SL-FEM显示出高精度和高求解速度,因此降阶SL-FEM的求解时间可与仅一个单个蒙特卡洛样品的求解时间相比。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号