...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >On the Geometric Conservation Law for the Non Linear Frequency Domain and Time-Spectral methods
【24h】

On the Geometric Conservation Law for the Non Linear Frequency Domain and Time-Spectral methods

机译:非线性频域和时间谱方法的几何守恒律

获取原文
获取原文并翻译 | 示例
           

摘要

The aim of this paper is to present and validate two new procedures to enforce the Geometric Conservation Law (GCL) on a moving grid for an Arbitrary Lagrangian Eulerian (ALE) formulation for the Euler equations discretized in time for either the Non Linear Frequency Domain (NLFD) or Time-Spectral (TS) methods. The equations are spatially discretized by a structured finite-volume scheme on a hexahedral mesh. The derived methodologies follow a general approach where the positions and the velocities of the grid points are known at each time step. The integrated face mesh velocities are derived either from the Approximation of the Exact Volumetric Increments (AEVI) relative to the undeformed mesh or exactly computed based on a Trilinear Mapping (TRI-MAP) between the physical space and the computational domain. The accuracy of the AEVI method highly depends on the computation of the volumetric increments and limits the temporal-order of accuracy of the deduced integrated face mesh velocities to between one and two. Thus defeating the purpose of the NLFD method which possesses spectral rate of convergence. However, the TRI-MAP method has proven to be more computationally efficient, ensuring the satisfaction of the GCL once the convergence of the temporal derivative of the cell volume is reached in Fourier space. The methods are validated numerically by verifying the conservation of uniform flow and by comparing the integrated face mesh velocities to the exact values derived from the mapping. Their performances for aerodynamic simulation are evaluated for a pitching NACA0012 airfoil. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文的目的是提出和验证两个新程序,以针对随时间离散化的非线性频率域(Euler)方程的任意拉格朗日欧拉(ALE)公式在移动网格上执行几何守恒定律(GCL) NLFD)或时间频谱(TS)方法。这些方程在六面体网格上通过结构化有限体积方案在空间上离散。派生的方法遵循通用方法,其中在每个时间步都知道网格点的位置和速度。整体面网格速度是从精确体积增量(AEVI)相对于未变形网格的近似值得出的,或者是基于物理空间和计算域之间的三线性映射(TRI-MAP)精确计算得出的。 AEVI方法的精度高度依赖于体积增量的计算,并将推论出的集成面网格速度的精度的时间顺序限制在1到2之间。因此违反了具有频谱收敛速率的NLFD方法的目的。但是,已证明TRI-MAP方法的计算效率更高,一旦在傅立叶空间中达到了细胞体积的时间导数的收敛,就可以确保GCL的满足。通过验证均匀流的守恒性以及将集成的面网格速度与从映射得出的精确值进行比较,对这些方法进行了数值验证。针对俯仰NACA0012机翼评估了其在空气动力学模拟中的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号