...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Enhanced conformal perfectly matched layers for Bernstein-Bezier finite element modelling of short wave scattering
【24h】

Enhanced conformal perfectly matched layers for Bernstein-Bezier finite element modelling of short wave scattering

机译:用于短波散射的Bernstein-Bezier有限元建模的增强共形完美匹配层

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The aim of this paper is to accurately solve short wave scattering problems governed by the Helmholtz equation using the Bernstein-Bezier Finite Element method (BBFEM), combined with a conformal perfectly matched layer (PML). Enhanced PMLs, where curved geometries are represented by means of the blending map method of Gordon and Hall, are numerically investigated. In particular, the performance of radial and elliptical shaped PMLs, with a parabolic absorption function, are assessed and compared in terms of accuracy against second order Bayliss-Gunzberger-Turkel (BGT(2)) based local absorbing boundary conditions. Numerical results dealing with problems of Hankel source radiation and wave scattering by a rigid cylinder show that the radial shaped PML, with the h and p versions of BBFEM, enables the recovery of the predicted algebraic and exponential convergence rates of a high order finite element method (FEM). Furthermore, radial shaped BGT(2) and PML have a similar performance, as long as the wave is not sufficiently well resolved. But, BGT(2) performs poorly as the wave resolution increases. Additionally, the effect of harmonics of higher modes on accuracy is examined. The study reveals that the PML outperforms BGT(2) for almost all propagating modes. However, a similar performance is achieved with both methods either with higher modes or a low wave resolution. Results from a multiple scattering benchmark problem provide evidence of the good performance of the proposed PMLs and the benefit of elliptical shaped PMLs in reducing significantly the size of the computational domain, without altering accuracy. The choice of the PML parameters ensuring optimal performance is also discussed. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文的目的是使用Bernstein-Bezier有限元方法(BBFEM)结合共形完美匹配层(PML)来精确解决由Helmholtz方程控制的短波散射问题。对增强的PML(通过Gordon和Hall的混合贴图方法表示弯曲的几何形状)进行了数值研究。特别是,评估和比较了具有抛物线吸收功能的径向和椭圆形PML的性能,并针对基于二阶Bayliss-Gunzberger-Turkel(BGT(2))的局部吸收边界条件进行了精度比较。处理汉克源辐射和刚性圆柱体的波散射问题的数值结果表明,带有BBFEM的h和p版本的径向PML能够恢复高阶有限元方法的预测代数和指数收敛速度(FEM)。此外,只要波形没有得到足够好的分辨,径向BGT(2)和PML具有类似的性能。但是,随着波分辨率的提高,BGT(2)的性能较差。此外,还检查了较高模式的谐波对精度的影响。研究表明,在几乎所有传播模式下,PML的性能均优于BGT(2)。但是,两种方法都可以在较高模式或低波分辨率下获得相似的性能。多重散射基准问题的结果提供了所提出的PML的良好性能的证据,以及椭圆形PML在显着减小计算域大小而又不改变精度的情况下的好处。还讨论了确保最佳性能的PML参数的选择。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号