首页> 外文期刊>Computer architecture news >Vantage: Scalable and Efficient Fine-Grain Cache Partitioning
【24h】

Vantage: Scalable and Efficient Fine-Grain Cache Partitioning

机译:Vantage:可扩展且高效的细粒度缓存分区

获取原文
获取原文并翻译 | 示例
           

摘要

Cache partitioning has a wide range of uses in CMPs, from guaranteeing quality of service and controlled sharing to security-related techniques. However, existing cache partitioning schemes (such as way-partitioning) are limited to coarse-grain allocations, can only support few partitions, and reduce cache associativity, hurting performance. Hence, these techniques can only be applied to CMPs with 2-4 cores, but fail to scale to tens of cores. We present Vantage, a novel cache partitioning technique that overcomes the limitations of existing schemes: caches can have tens of partitions with sizes specified at cache line granularity, while maintaining high associativity and strong isolation among partitions. Vantage leverages cache arrays with good hashing and associativity, which enable soft-pinning a large portion of cache lines. It enforces capacity allocations by controlling the replacement process. Unlike prior schemes, Vantage provides strict isolation guarantees by partitioning most (e.g. 90%) of the cache instead of all of it. Vantage is derived from analytical models, which allow us to provide strong guarantees and bounds on associativity and sizing independent of the number of partitions and their behaviors. It is simple to implement, requiring around 1.5% state overhead and simple changes to the cache controller. We evaluate Vantage using extensive simulations. On a 32-core system, using 350 multiprogrammed workloads and one partition per core, partitioning the last-level cache with conventional techniques degrades throughput for 71% of the workloads versus an unpartitioned cache (by 7% average, 25% maximum degradation), even when using 64-way caches. In contrast, Vantage improves throughput for 98% of the workloads, by 8% on average (up to 20%), using a 4-way cache.
机译:高速缓存分区在CMP中具有广泛的用途,从保证服务质量和受控共享到与安全性相关的技术。但是,现有的高速缓存分区方案(例如,方式分区)仅限于粗粒度分配,只能支持很少的分区,并且降低了高速缓存的关联性,从而降低了性能。因此,这些技术只能应用于具有2-4个核心的CMP,但无法扩展到数十个核心。我们介绍了Vantage,这是一种新颖的缓存分区技术,它克服了现有方案的局限性:缓存可以具有数十个分区,其大小按缓存行的粒度指定,同时保持高关联性和分区之间的强隔离性。 Vantage利用具有良好散列和关联性的高速缓存阵列,可以对大部分高速缓存行进行软固定。它通过控制替换过程来强制进行容量分配。与先前的方案不同,Vantage通过分区大部分(例如90%)的缓存而不是全部缓存来提供严格的隔离保证。 Vantage是从分析模型派生而来的,它使我们能够提供强大的关联性和界限,而不受分区数及其行为的影响。它易于实现,需要约1.5%的状态开销,并且只需更改缓存控制器即可。我们使用广泛的仿真评估Vantage。在32核系统上,使用350个多程序工作负载和每个内核一个分区,使用传统技术对最后一级的缓存进行分区会降低71%的工作负载的吞吐量,而未分区的缓存则会降低吞吐量(平均降低7%,最大降低25%),即使使用64路缓存。相比之下,Vantage使用4路缓存将98%的工作负载的吞吐量平均提高了8%(最高达到20%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号