首页> 外文期刊>Computer architecture news >Quantum Rotations: A Case Study in Static and Dynamic Machine-Code Generation for Quantum Computers
【24h】

Quantum Rotations: A Case Study in Static and Dynamic Machine-Code Generation for Quantum Computers

机译:量子旋转:量子计算机静态和动态机器代码生成的案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

Work in quantum computer architecture has focused on communication, layout and fault tolerance, largely driven by Shor's factorization algorithm. For the first time, we study a larger range of benchmarks and find that another critical issue is the generation of code sequences for quantum rotation operations. Specifically, quantum algorithms require arbitrary rotation angles, while quantum technologies and error correction codes provide only for discrete angles and operators. A sequence of quantum machine instructions must be generated to approximate the arbitrary rotation to the required precision. While previous work has focused exclusively on static compilation, we find that some applications require dynamic code generation and explore the advantages and disadvantages of static and dynamic approaches. We find that static code generation can, in some cases, lead to a terabyte of machine code to support required rotations. We also find that some rotation angles are unknown until run time, requiring dynamic code generation. Dynamic code generation, however, exhibits significant trade-offs in terms of time overhead versus code size. Furthermore, dynamic code genera- tion will be performed on classical (non-quantum) computing resources, which may or may not have a clock speed advantage over the target quantum technology. For example, operations on trapped ions run at kilohertz speeds, but superconducting qubits run at gigahertz speeds. We introduce a new method for compiling arbitrary rotations dynamically, designed to minimize compilation time. The new method reduces compilation time by up to five orders of magnitude while increasing code size by one order of magnitude. We explore the design space formed by these trade-offs of dynamic versus static code generation, code quality, and quantum technology. We introduce several techniques to provide smoother trade-offs for dynamic code generation and evaluate the viability of options in the design space.
机译:量子计算机体系结构的工作主要集中在通信,布局和容错方面,这主要由Shor的因式分解算法驱动。我们第一次研究了更大范围的基准,发现另一个关键问题是量子旋转操作的代码序列的生成。具体来说,量子算法需要任意旋转角度,而量子技术和纠错代码仅提供离散角度和算符。必须生成一系列量子机器指令,以将任意旋转近似到所需的精度。尽管先前的工作专门针对静态编译,但是我们发现某些应用程序需要动态代码生成,并探讨了静态和动态方法的优缺点。我们发现,在某些情况下,静态代码生成会导致数TB的机器代码支持所需的旋转。我们还发现某些旋转角度直到运行时才未知,这需要动态代码生成。但是,动态代码生成在时间开销和代码大小方面表现出重大的权衡。此外,动态代码生成将在经典(非量子)计算资源上执行,这可能会或可能不会比目标量子技术具有时钟速度优势。例如,对捕获离子的操作以千赫兹的速度运行,但是超导量子位以千兆赫兹的速度运行。我们介绍了一种动态编译任意旋转的新方法,旨在最大程度地减少编译时间。新方法将编译时间最多减少了五个数量级,同时将代码大小增加了一个数量级。我们探讨了动态代码生成与静态代码生成,代码质量以及量子技术之间的权衡取舍而形成的设计空间。我们介绍了几种技术,可以为动态代码生成提供更平滑的权衡,并评估设计空间中选项的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号