首页> 外文期刊>Computer architecture news >More is Less, Less is More: Molecular-Scale Photonic NoC Power Topologies
【24h】

More is Less, Less is More: Molecular-Scale Photonic NoC Power Topologies

机译:少即是,少即是:分子级光子NoC功率拓扑

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Molecular-scale Network-on-Chip (mNoC) crossbars use quantum dot LEDs as an on-chip light source, and chro-mophores to provide optical signal filtering for receivers. An mNoC reduces power consumption or enables scaling to larger crossbars for a reduced energy budget compared to current nanophotonic NoC crossbars. Since communication latency is reduced by using a high-radix crossbar, minimizing power consumption becomes a primary design target. Conventional Single Writer Multiple Reader (SWMR) photonic crossbar designs broadcast all packets, and incur the commensurate required power, even if only two nodes are communicating. This paper introduces power topologies, enabled by unique capabilities of mNoC technology, to reduce overall interconnect power consumption. A power topology corresponds to the logical connectivity provided by a given power mode. Broadcast is one power mode and it consumes the maximum power. Additional power modes consume less power but allow a source to communicate with only a statically defined, potentially non-contiguous, subset of nodes. Overall interconnect power is reduced if the more frequently communicating nodes use modes that consume less power, while less frequently communicating nodes use modes that consume more power. We also investigate thread mapping techniques to fully exploit power topologies. We explore various mNoC power topologies with one, two and four power modes for a radix-256 SWMR mNoC crossbar. Our results show that the combination of power topologies and intelligent thread mapping can reduce total mNoC power by up to 51% on average for a set of 12 SPLASH benchmarks. Furthermore performance is 10% better than conventional resonator-based photonic NoCs and energy is reduced by 72%.
机译:分子级片上网络(mNoC)交叉开关使用量子点LED作为片上光源,并使用色度体为接收器提供光信号过滤。与当前的纳米光子NoC交叉开关相比,mNoC可以降低功耗或实现扩展到更大的交叉开关以减少能源预算。由于通过使用高基数交叉开关减少了通信等待时间,因此将功耗降至最低成为主要设计目标。传统的单写入器多读取器(SWMR)光子交叉开关设计会广播所有数据包,并且即使只有两个节点正在通信,也要产生相应的所需功率。本文介绍了通过mNoC技术的独特功能实现的电源拓扑,以降低整体互连的功耗。电源拓扑对应于给定电源模式提供的逻辑连接。广播是一种功率模式,它消耗最大功率。其他功率模式消耗的功率更少,但允许源仅与静态定义的,可能不连续的节点子集进行通信。如果通信频率较高的节点使用功耗较小的模式,而通信频率较低的节点使用功耗较大的模式,则总体互连功率会降低。我们还将研究线程映射技术,以充分利用电源拓扑。我们针对radix-256 SWMR mNoC交叉开关探索一种,两种和四种功率模式的各种mNoC电源拓扑。我们的结果表明,对于一组12个SPLASH基准测试,电源拓扑和智能线程映射的组合平均可将mNoC总功耗平均降低多达51%。此外,性能比传统的基于谐振器的光子NoC好10%,并且能量减少了72%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号