...
首页> 外文期刊>Computer Aided Geometric Design >Discrete Lie flow: A measure controllable parameterization method
【24h】

Discrete Lie flow: A measure controllable parameterization method

机译:离散李流:一种度量可控制的参数化方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Computing measure controllable parameterizations for general surface is a fundamental task for medical imaging and computer graphics, which is designed to control the measures of the regions of interest in the parameterization domain for more accurate and thorough detection and examination of data. Previous works usually handle just some certain kind of topology and boundary shapes, or are computationally complex. In this paper, a modified approach based on the technique of lie advection is presented for the measure controllable parameterization of geometry objects in the general context of 2-manifold surfaces. Given a general surface with arbitrary initial parameterization without flips but usually with great area distortion, the Lie derivative is introduced to eliminate the difference between the initial parameterization and the prescribed measure. The vertices flow in the directions derived through the Lie derivative and finally converge to the ideal measure, and by its geometric meaning, this method will be called as DLF (Discrete Lie Flow) intuitively. Compared with previous methods based on Lie derivative, two key modifications were made: an adaptive step-length scheme resulting in a substantive acceleration and robustness and a measure controllable function. Area preserving mapping can be generated easily through our DLF algorithm as a special case for measure controllable parameterization. With various algorithms developed for mesh parameterization based on energy optimization approaches in recent years, our DLF is the minority that is supported by a solid differential geometric theory. We tested our method on plenty of cases, including disk models with convex and non-convex boundaries, and spherical models. Experimental results demonstrate the efficiency of the proposed algorithm. (C) 2019 Elsevier B.V. All rights reserved.
机译:计算通用表面的度量可控参数化是医学成像和计算机图形学的一项基本任务,该任务旨在控制参数化域中感兴趣区域的度量,以更准确,彻底地检测和检查数据。以前的作品通常只处理某种特定的拓扑和边界形状,或者计算复杂。在本文中,提出了一种基于对流平流技术的改进方法,用于在2流形曲面的一般情况下对几何对象进行测量可控制的参数化。给定具有任意初始参数化且没有翻转但通常具有较大面积失真的普通曲面,引入Lie导数以消除初始参数化和指定度量之间的差异。顶点在通过Lie导数得出的方向上流动,最终收敛到理想度量,并且根据其几何含义,该方法在直觉上称为DLF(离散Lie流)。与以前的基于Lie导数的方法相比,进行了两个关键的修改:自适应步长方案,产生了明显的加速度和鲁棒性,并且度量可控函数。通过DLF算法可以很容易地生成保留区域的映射,这是测量可控参数化的特殊情况。近年来,随着基于能量优化方法为网格参数化开发的各种算法,我们的DLF是由固体微分几何理论支持的少数算法。我们在很多情况下测试了我们的方法,包括具有凸边界和非凸边界的磁盘模型以及球形模型。实验结果证明了该算法的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号