...
首页> 外文期刊>Computational Mechanics >Thermal analysis of carbon-nanotube composites using a rigid-line inclusion model by the boundary integral equation method
【24h】

Thermal analysis of carbon-nanotube composites using a rigid-line inclusion model by the boundary integral equation method

机译:碳纳米管复合材料的热线夹杂模型的边界积分方程法热分析

获取原文
获取原文并翻译 | 示例

摘要

The boundary integral equation (BIE) method is applied for the thermal analysis of fiber-reinforced composites, particularly the carbon-nanotube (CNT) composites, based on a rigid-line inclusion model. The steady state heat conduction equation is solved using the BIE in a two-dimensional infinite domain containing line inclusions which are assumed to have a much higher thermal conductivity (like CNTs) than that of the host medium. Thus the temperature along the length of a line inclusion can be assumed constant. In this way, each inclusion can be regarded as a “rigid line” (the opposite of a crack) in the medium. It is shown that, like the crack case, the hypersingular (derivative) BIE can be applied to model these rigid lines. The boundary element method (BEM), accelerated with the fast multipole method, is used to solve the established hypersingular BIE. Numerical examples with up to 10,000 rigid lines (with 1,000,000 equations), are successfully solved by the BEM code on a laptop computer. Effective thermal conductivity of fiber-reinforced composites are evaluated using the computed temperature and heat flux fields. These numerical results are compared with the analytical solution for a single inclusion case and with the experimental one reported in the literature for carbon-nanotube composites for multiple inclusion cases. Good agreements are observed in both situations, which clearly demonstrates the potential of the developed approach in large-scale modeling of fiber-reinforced composites, particularly that of the emerging carbon-nanotube composites.
机译:基于刚性线夹杂模型,边界积分方程(BIE)方法用于纤维增强复合材料,特别是碳纳米管(CNT)复合材料的热分析。在二维无限域中使用BIE求解稳态热传导方程,该二维无限域包含线夹杂物,假定这些线夹杂物的导热系数(例如CNT)比宿主介质的导热系数高得多。因此,沿线夹杂物长度的温度可以假定为恒定。这样,每个夹杂物都可以视为介质中的“刚性线”(与裂纹相对)。结果表明,与裂纹情况一样,超奇异(导数)BIE可以应用于对这些刚性线进行建模。用快速多极方法加速的边界元方法(BEM)用于求解已建立的超奇异BIE。便携式计算机上的BEM代码已成功解决了多达10,000条刚性线(带有1,000,000个方程)的数值示例。使用计算出的温度和热通量场评估纤维增强复合材料的有效导热系数。将这些数值结果与单个夹杂物案例的分析解决方案以及文献中针对碳纳米管复合材料的多个夹杂物案例的实验结果进行了比较。在两种情况下均观察到良好的协议,这清楚地证明了所开发方法在纤维增强复合材料(尤其是新兴的碳纳米管复合材料)的大规模建模中的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号