首页> 外文期刊>Computational Geosciences >A deep learning perspective on predicting permeability in porous media from network modeling to direct simulation
【24h】

A deep learning perspective on predicting permeability in porous media from network modeling to direct simulation

机译:从网络建模预测多孔介质渗透率直接模拟的深度学习视角

获取原文
获取原文并翻译 | 示例
       

摘要

Predicting the petrophysical properties of rock samples using micro-CT images has gained significant attention recently. However, an accurate and an efficient numerical tool is still lacking. After investigating three numerical techniques, (ⅰ) pore network modeling (PNM), (ⅱ) the finite volume method (FVM), and (ⅲ) the lattice Boltzmann method (LBM), a workflow based on machine learning is established for fast and accurate prediction of permeability directly from 3D micro-CT images. We use more than 1100 samples scanned at high resolution and extract the relevant features from these samples for use in a supervised learning algorithm. The approach takes advantage of the efficient computation provided by PNM and the accuracy of the LBM to quickly and accurately estimate rock permeability. The relevant features derived from PNM and image analysis are fed into a supervised machine learning model and a deep neural network to compute the permeability in an end-to-end regression scheme. Within a supervised learning framework, machine and deep learning algorithms based on linear regression, gradient boosting, and physics-informed convolutional neural networks (CNNs) are applied to predict the petrophysical properties of porous rock from 3D micro-CT images. We have performed the sensitivity analysis on the feature importance, hyperparameters, and different learning algorithms to make a prediction. Values of R~2 scores up to 88% and 91% are achieved using machine learning regression models and the deep learning approach, respectively. Remarkably, a significant gain in computation time-approximately 3 orders of magnitude-is achieved by applied machine learning compared with the LBM. Finally, the study highlights the critical role played by feature engineering in predicting petrophysical properties using deep learning.
机译:预测使用微型CT图像的岩石样品的岩石物理特性最近在显着的关注。然而,仍然缺乏准确和有效的数字工具。在研究三种数值技术后,(Ⅰ)孔网络建模(PNM),(Ⅱ)有限体积法(FVM)和(Ⅲ)晶格Boltzmann方法(LBM),基于机器学习的工作流程是快速的直接从3D微型CT图像准确地预测渗透率。我们使用高分辨率扫描的1100多个样本,并从这些样品中提取相关特征以用于监督学习算法。该方法利用PNM提供的有效计算和LBM快速准确地估计岩石渗透率的高效计算。从PNM和图像分析导出的相关特征被馈送到监督机器学习模型和深度神经网络中,以计算端到端回归方案中的渗透性。在监督的学习框架内,基于线性回归的机器和深度学习算法,梯度升压和物理信息的卷积神经网络(CNNS)被应用于预测来自3D微CT图像的多孔岩石的岩石物理特性。我们对特征重要性,超参数和不同学习算法进行了敏感性分析,以进行预测。使用机器学习回归模型和深度学习方法分别实现了r〜2分数高达88%和91%的值。值得注意的是,通过应用机器学习与LBM相比,通过应用机器学习实现了计算时间的显着增益 - 通过应用机器学习实现。最后,该研究突出了特征工程在使用深度学习预测岩石物理学的关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号