首页> 外文期刊>Computational Geosciences >Fully-automated adaptive mesh refinement for media embedding complex heterogeneities: application to poroelastic fluid pressure diffusion
【24h】

Fully-automated adaptive mesh refinement for media embedding complex heterogeneities: application to poroelastic fluid pressure diffusion

机译:用于媒体嵌入复杂异质性的全自动自动网眼细化:适用于多孔弹性流体压力扩散

获取原文
获取原文并翻译 | 示例
           

摘要

Relating the attenuation and velocity dispersion of seismic waves to fluid pressure diffusion (FDP) by means of numerical simulations is essential for constraining the mechanical and hydraulic properties of heterogeneous porous rocks. This, in turn, is of significant importance for a wide range of prominent applications throughout the Earth, environmental, and engineering sciences, such as, for example, geothermal energy production, hydrocarbon exploration, nuclear waste disposal, and CO_2 storage. In order to assess the effects of wave-induced FDP in heterogeneous porous rocks, we simulate time-harmonic oscillatory tests based on a finite element (FE) discretization of Biot's equations in the time-frequency domain for representative elementary volumes (REVs) of the considered rock masses. The major challenge for these types of simulations is the creation of adequate computational meshes, which resolve the numerous and complex interfaces between the heterogeneities and the embedding background. To this end, we have developed a novel method based on adaptive mesh refinement (AMR), which allows for the fully automatic creation of meshes for strongly heterogenous media. The key concept of the proposed method is to start from an initially uniform coarse mesh and then to gradually refine elements which have non-empty overlaps with the embedded heterogeneities. This results in a hierarchy of non-uniform meshes with a large number of elements close to the interfaces, which do, however, not need to be explicitly resolved. This dramatically simplifies and accelerates the laborious and time-consuming process of meshing strongly heterogeneous poroelastic media, thus enabling the efficient simulation of REVs containing heterogeneities of quasi-arbitrary complexity. After a detailed description of the methodological foundations, we proceed to demonstrate that the FE discretization with low-order FE has a unique solution and hence does not present spurious modes. We assess the practical effectiveness and accuracy of the proposed method by means of four case studies of increasing complexity.
机译:通过数值模拟将地震波对流体压力扩散(FDP)相关的衰减和速度分散对于限制异质多孔岩石的机械和液压性能至关重要。反过来,这对整个地球,环境和工程科学的广泛突出应用方面具有重要意义,例如地热能生产,碳氢化合物勘探,核废料处理和CO_2储存。为了评估波诱导的FDP在异构多孔岩石中的影响,我们基于用于代表基本卷(REV)的时频域中的BIOS方程的有限元(FE)离散化的时间谐波振荡测试。被认为是岩石群众。这些类型的模拟的主要挑战是创建适当的计算网格,这解决了异质性和嵌入后背景之间的许多复杂的接口。为此,我们开发了一种基于自适应网格细化(AMR)的新方法,其允许为强异源介质全自动创建网格。所提出的方法的关键概念是从最初均匀的粗网格开始,然后逐渐细化与嵌入异质性具有非空重叠的元件。这导致具有靠近接口的大量元素的非均匀网格层次,但是不需要明确地解析。这显着简化并加速了啮合强异质孔弹性介质的艰苦和耗时的过程,从而能够有效地模拟含有准任意复杂性的异质性的Revs。在详细描述方法基础之后,我们继续证明具有低阶FE的FE离散化具有独特的解决方案,因此不存在虚假模式。我们通过四种案例研究来评估所提出的方法的实际效果和准确性,提高复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号