首页> 外文期刊>Computational Geosciences >Flow-based coarsening for multiscale simulation of transport in porous media
【24h】

Flow-based coarsening for multiscale simulation of transport in porous media

机译:基于流的粗化,用于多孔介质传输的多尺度模拟

获取原文
获取原文并翻译 | 示例
       

摘要

Geological models are becoming increasingly large and detailed to account for heterogeneous structures on different spatial scales. To obtain simulation models that are computationally tractable, it is common to remove spatial detail from the geological description by upscaling. Pressure and transport equations are different in nature and generally require different strategies for optimal upgridding. To optimize the accuracy of a transport calculation, the coarsened grid should generally be constructed based on a posteriori error estimates and adapt to the flow patterns predicted by the pressure equation. However, sharp and rigorous estimates are generally hard to obtain, and herein we therefore consider various ad hoc methods for generating flow-adapted grids. Common for all is that they start by solving a single-phase flow problem once and then continue to form a coarsened grid by amalgamating cells from an underlying fine-scale grid. We present several variations of the original method. First, we discuss how to include a priori information in the coarsening process, e.g. to adapt to special geological features or to obtain less irregular grids in regions where flowadaption is not crucial. Second, we discuss the use of bi-directional versus net fluxes over the coarse blocks and show how the latter gives systems that better represent the causality in the flow equations, which can be exploited to develop very efficient nonlinear solvers. Finally, we demonstrate how to improve simulation accuracy by dynamically adding local resolution near strong saturation fronts.
机译:地质模型变得越来越大和详细,以解决不同空间尺度上的异质结构。为了获得在计算上易于处理的仿真模型,通常会通过放大从地质描述中删除空间细节。压力和输运方程式本质上是不同的,并且通常需要不同的策略才能实现最佳的向上磨合。为了优化运输计算的准确性,通常应基于后验误差估计值构造粗化网格,并使其适应压力方程预测的流动模式。但是,通常很难获得准确而严格的估计,因此在此我们考虑用于生成流量自适应网格的各种临时方法。对于所有人而言,它们的共同点是首先解决一次单相流动问题,然后通过合并下层细尺度网格中的单元,继续形成粗化网格。我们介绍了原始方法的几种变体。首先,我们讨论如何在粗化过程中包括先验信息,例如以适应特殊的地质特征或在流量自适应不是很关键的区域获得较少的不规则网格。其次,我们讨论了在粗块上使用双向通量与净通量的关系,并说明了后者如何使系统更好地表示流动方程中的因果关系,可以利用这些通量来开发非常有效的非线性求解器。最后,我们演示了如何通过动态添加强饱和前沿附近的局部分辨率来提高仿真精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号